Displaying all 4 publications

Abstract:
Sort:
  1. Kobayashi N, Thayan R, Sugimoto C, Oda K, Saat Z, Vijayamalar B, et al.
    Am J Trop Med Hyg, 1999 Jun;60(6):904-9.
    PMID: 10403318
    To characterize the dengue epidemic that recently occurred in Malaysia, we sequenced cDNAs from nine 1993-1994 dengue virus type-3 (DEN-3) isolates in Malaysia (DEN-3 was the most common type in Malaysia during this period). Nucleic acid sequences (720 nucleotides in length) from the nine isolates, encompassing the precursor of membrane protein (preM) and membrane (M) protein genes and part of the envelope (E) protein gene were aligned with various reference DEN-3 sequences to generate a neighbor-joining phylogenetic tree. According to the constructed tree, the nine Malaysian isolates were grouped into subtype II, which comprises Thai isolates from 1962 to 1987. Five earlier DEN-3 virus Malaysian isolates from 1974 to 1981 belonged to subtype I. The present data indicate that the recent dengue epidemic in Malaysia was due to the introduction of DEN-3 viruses previously endemic to Thailand.
  2. Guo J, Kitamura T, Ebihara H, Sugimoto C, Kunitake T, Takehisa J, et al.
    J Gen Virol, 1996 May;77 ( Pt 5):919-27.
    PMID: 8609488
    The JC polyomavirus (JCV) is ubiquitous in humans infecting children asymptomatically, then persisting in renal tissue. Since JCV DNA can be readily isolated from urine, it should be a useful tool with which to study the evolution of DNA viruses in humans. We showed that JCV DNA from the urine of Japanese, Taiwanese, Dutch and German patients can be classified into A and B types, based upon restriction fragment length polymorphisms (RFLPs). This work was extended in the present study. We established multiple JCV DNA clones from the UK, Spain, Italy, Sweden, South Korea, People's Republic of China, Malaysia, Indonesia, Mongolia, India, Sri Lanka, Saudi Arabia, Ethiopia, Kenya, Zambia, South Africa and Ghana. Using type-specific RFLPs, most clones except the four clones from Ghana were classified as either type A or B. We constructed a molecular phylogenetic tree for the Ghanaian clones and several representative type A and B clones. According to the phylogenetic tree, the Ghanaian clones constituted a major new group, tentatively named type C. From the findings presented here and elsewhere, the following conclusions were drawn: (i) type A is prevalent only in Europe; (ii) type B is found mainly in Asia and Africa; and (iii) type C is localized to part of Africa. Our findings should help to clarify how JCV evolved in humans.
  3. Watanabe M, Nakao R, Amin-Babjee SM, Maizatul AM, Youn JH, Qiu Y, et al.
    Trop Biomed, 2015 Jun;32(2):390-8.
    PMID: 26691268 MyJurnal
    A total of 44 Rhipicephalus sanguineus ticks collected from 23 dogs from Malaysia were screened for Rickettsia, Anaplasmataceae and Coxiella burnetii. Coxiella burnetii was detected in 59% (26/44) of ticks however Rickettsia and Anaplasmataceae were not detected in any of the ticks. In order to genotype the strains of C. burnetii, multispacer sequence typing (MST) was carried out using three different spacers. One of the spacers; Cox2 successfully amplified a fragment for which the full length sequence of 397 bp was obtained. The sequenced product revealed only a single nucleotide difference with the Cox2.3 type sequence.
  4. Amiruddin N, Lee XW, Blake DP, Suzuki Y, Tay YL, Lim LS, et al.
    BMC Genomics, 2012 Jan 13;13:21.
    PMID: 22244352 DOI: 10.1186/1471-2164-13-21
    BACKGROUND: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis.

    RESULTS: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis.

    CONCLUSIONS: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links