METHODS: Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T. Diffusion and perfusion-weighted images, and water relaxation time maps were also acquired to study the relationship of these conventional imaging modalities with the different APT quantification methods.
RESULTS: The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 ≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods produced the highest contrast-to-noise ratios (CNRs; 1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that were comparable in size to the cerebral blood flow (CBF) deficit areas; asymmetry analysis and its variants produced APT ischemic areas that were smaller than the CBF deficit areas but larger than the apparent diffusion coefficient deficit areas, though having lower CNRs (0.561 ≤ CNR ≤ 1.083).
CONCLUSION: There is a need to further investigate the accuracy and correlation of each quantification method with the pathophysiology using a larger scale multi-imaging modality and multi-time-point clinical study. Future studies should include the magnetization transfer ratio asymmetry results alongside the findings of the study to facilitate the comparison of results between different centers and also the published literature.
METHODS: Diffusion-weighted imaging, perfusion-weighted imaging, and chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) data were acquired from five rats that underwent scans at 9.4 T after middle cerebral artery occlusion.
RESULTS: The apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and apparent exchange-dependent relaxations (AREX) at 3.5 ppm and NOE(-1.6 ppm) were quantified. AREX(3.5 ppm) and NOE(-1.6 ppm) were found to be hypointense and exhibited different signal patterns within the ischemic tissue. The NOE(-1.6 ppm) deficit areas were equal to or larger than the ADC deficit areas, but smaller than the AREX(3.5 ppm) deficit areas. This suggested that NOE(-1.6 ppm) might further delineate the acidotic tissue estimated using AREX(3.5 ppm). Since NOE(-1.6 ppm) is closely related to membrane phospholipids, NOE(-1.6 ppm) potentially highlighted at-risk tissue affected by lipid peroxidation and membrane damage. Altogether, the ADC/NOE(-1.6 ppm)/AREX(3.5 ppm)/CBF mismatches revealed four zones of increasing sizes within the ischemic tissue, potentially reflecting different pathophysiological information.
CONCLUSIONS: Using CEST coupled with ADC and CBF, the ischemic tissue may thus potentially be separated into four zones to better understand the pathophysiology after stroke and improve ischemic tissue fate definition. Further verification of the potential utility of NOE(-1.6 ppm) may therefore lead to a more precise diagnosis.