Displaying all 2 publications

Abstract:
Sort:
  1. Tajudin SM, Tabbakh F
    Radiol Phys Technol, 2019 Sep;12(3):299-304.
    PMID: 31302871 DOI: 10.1007/s12194-019-00522-w
    Photon irradiation facilities are often shielded using lead despite its toxicity and high cost. In this study, three Monte Carlo codes, EGS5, MCNPX, and Geant4, were utilized to investigate the efficiency of a relatively new polymeric base compound (CnH2n), as a radiation shielding material for photons with energies below 150 keV. The proposed compound with the densities of 6 and 8 g cm-3 were doped with the weight percentages of 8.0 and 15.0% gadolinium. The probabilities of photoelectric effect and Compton scattering were relatively equal at low photon energies, thus the shielding design was optimized using three Monte Carlo codes for the conformity of calculation results. Consequently, 8% Gd-doped polymer with thickness less than 2 cm and density of 6 g cm-3 was adequate for X-ray room shielding to attenuate more than 95% of the 150-keV incident photons. An average dose rate reduction of 88% can be achieved to ensure safety of the radiation area.
  2. Tabbakh F, Hosmane NS, Tajudin SM, Ghorashi AH, Morshedian N
    Sci Rep, 2022 Oct 18;12(1):17404.
    PMID: 36258012 DOI: 10.1038/s41598-022-22429-0
    There are two major problems in proton therapy. (1) In comparison with the gamma-ray therapy, proton therapy has only ~ 10% greater biological effectiveness, and (2) the risk of the secondary neutrons in proton therapy is another unsolved problem. In this report, the increase of biological effectiveness in proton therapy has been evaluated with better performance than 11B in the presence of two proposed nanomaterials of 157GdF4 and 157Gd doped carbon with the thermal neutron reduction due to the presence of 157Gd isotope. The present study is based on the microanalysis calculations using GEANT4 Monte Carlo tool and GEANT4-DNA package for the strand breaks measurement. It was found that the proposed method will increase the effectiveness corresponding to the alpha particles by more than 100% and also, potentially will decrease the thermal neutrons fluence, significantly. Also, in this work, a discussion is presented on a significant contribution of the secondary alpha particles in total effectiveness in proton therapy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links