Prostate-specific antigen is currently the only protein biomarker routinely used as a diagnostic tool for early detection and treatment monitoring of prostate cancer. However, it remains questionable whether prostate-specific antigen-based screening can sensitively and selectively identify the presence and progression status of primary and metastatic prostate cancers. Hence, the purpose of this study was to identify potential biomarker candidates in the secretome of primary and metastatic prostate cancer cells by using a combination of global and targeted proteomics. Quantitative comparisons among secretome proteins derived from androgen-responsive primary cancer cells (P-22Rv1), androgen-irresponsive bone metastatic cancer cells (M-PC-3), and noncancerous prostate cells (N-PNT2) were performed using 2-dimensional image-converted analysis of liquid chromatography and mass spectrometry followed by in silico selection selected reaction monitoring analysis. Mediator of RNA polymerase II transcription subunit 13-like, insulin-like growth factor-binding protein 2, and hepatocyte growth factor were identified as highly secreted proteins from P-22Rv1 cells compared with N-PNT2 cells. Prostate-associated microseminoprotein, proactivator polypeptide, collagen-α-1 (VI) chain, and neuropilin-1 were identified as predominantly secreted proteins in M-PC-3 cells compared with N-PNT2 cells. These proteins in biological fluids are considered to be candidate biomarkers of primary and/or metastatic prostate cancer.