The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Caesarean section (c-section) rates have been increasing dramatically in the past decades around the world. This increase has been attributed to multiple factors such as maternal, socio-demographic and institutional fac-tors. Therefore, this study examines the impact of maternal, socio-demographic and relevant characteristics on caesar-ean delivery in the northern region of Bangladesh.
Micro- and nano-plastics (MPs/NPs) are characterized by their small size and extensive surface area, making them global environmental pollutants with adverse effects on organisms at various levels, including organs, cells, and molecules. Freshwater organisms, such as microalgae, emerging plants, zooplankton, benthic species, and fish, experience varying impacts from MPs/NPs, which are prevalent in both terrestrial and aquatic inland environments. MPs/NPs significantly impact plant physiological processes, including photosynthesis, antioxidant response, energy metabolism, and nitrogen removal. Extended exposure and ingestion to MPs/NPs might cause metabolic and behavioral deviations in zooplankton, posing an extinction risk. Upon exposure to MPs/NPs, both benthic organisms and fish display behavioral and metabolic disturbances, due to oxidative stress, neural toxicity, intestinal damage, and metabolic changes. Results from laboratory and field investigations have confirmed that MPs/NPs can be transported across multiple trophic levels. Moreover, MPs/NPs-induced alterations in zooplankton populations can impede energy transfer, leading to food scarcity for filter-feeding fish, larvae of benthic organism and fish, thus jeopardizing aquatic ecosystems. Furthermore, MPs/NPs can harm the nervous systems of aquatic organisms, influencing their feeding patterns, circadian rhythms, and mobility. Such behavioral alterations might also introduce unforeseen ecological risks. This comprehensive review aims to explore the consequences of MPs/NPs on freshwater organisms and their interconnected food webs. The investigation encompasses various aspects, including behavioral changes, alterations in physiology, impacts on metabolism, transgenerational effects, and the disruption of energy transfer within the ecosystem. This review elucidated the physiological and biochemical toxicity of MPs/NPs on freshwater organisms, and the ensuing risks to inland aquatic ecosystems.