Affiliations 

  • 1 Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
  • 2 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
  • 3 Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
  • 4 College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
  • 5 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
  • 6 College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Department of Zoology, The Islamia University of Bahawalpur Pakistan, Punjab 63100, Pakistan
  • 7 Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia. Electronic address: mingmhan@foxmail.com
Aquat Toxicol, 2023 Dec;265:106774.
PMID: 38000134 DOI: 10.1016/j.aquatox.2023.106774

Abstract

Micro- and nano-plastics (MPs/NPs) are characterized by their small size and extensive surface area, making them global environmental pollutants with adverse effects on organisms at various levels, including organs, cells, and molecules. Freshwater organisms, such as microalgae, emerging plants, zooplankton, benthic species, and fish, experience varying impacts from MPs/NPs, which are prevalent in both terrestrial and aquatic inland environments. MPs/NPs significantly impact plant physiological processes, including photosynthesis, antioxidant response, energy metabolism, and nitrogen removal. Extended exposure and ingestion to MPs/NPs might cause metabolic and behavioral deviations in zooplankton, posing an extinction risk. Upon exposure to MPs/NPs, both benthic organisms and fish display behavioral and metabolic disturbances, due to oxidative stress, neural toxicity, intestinal damage, and metabolic changes. Results from laboratory and field investigations have confirmed that MPs/NPs can be transported across multiple trophic levels. Moreover, MPs/NPs-induced alterations in zooplankton populations can impede energy transfer, leading to food scarcity for filter-feeding fish, larvae of benthic organism and fish, thus jeopardizing aquatic ecosystems. Furthermore, MPs/NPs can harm the nervous systems of aquatic organisms, influencing their feeding patterns, circadian rhythms, and mobility. Such behavioral alterations might also introduce unforeseen ecological risks. This comprehensive review aims to explore the consequences of MPs/NPs on freshwater organisms and their interconnected food webs. The investigation encompasses various aspects, including behavioral changes, alterations in physiology, impacts on metabolism, transgenerational effects, and the disruption of energy transfer within the ecosystem. This review elucidated the physiological and biochemical toxicity of MPs/NPs on freshwater organisms, and the ensuing risks to inland aquatic ecosystems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.