Displaying all 4 publications

Abstract:
Sort:
  1. Hasan NI, Mohd Taib A, Muhammad NS, Mat Yazid MR, Mutalib AA, Abang Hasbollah DZ
    PLoS One, 2020;15(12):e0243293.
    PMID: 33332375 DOI: 10.1371/journal.pone.0243293
    The main cause of problematic soil failure under a certain load is due to low bearing capacity and excessive settlement. With a growing interest in employing shallow foundation to support heavy structures, it is important to study the soil improvement techniques. The technique of using geosynthetic reinforcement is commonly applied over the last few decades. This paper aims to determine the effect of using geogrid Tensar BX1500 on the bearing capacity and settlement of strip footing for different types of soils, namely Al-Hamedat, Ba'shiqah, and Al-Rashidia in Mosul, Iraq. The analysis of reinforced and unreinforced soil foundations was conducted numerically and analytically. A series of conditions were tested by varying the number (N) and the width (b) of the geogrid layers. The results showed that the geogrid could improve the footing's bearing capacity and reduce settlement. The soil of the Al-Rashidia site was sandy and indicated better improvement than the other two sites' soils (clayey soils). The optimum geogrid width (b) was five times the footing width (B), while no optimum geogrid number (N) was obtained. Finally, the numerical results of the ultimate bearing capacity were compared with the analytical results, and the comparison showed good agreement between both the analyses and the optimum range published in the literature. The significant findings reveal that the geogrid reinforcement may induce improvement to the soil foundation, however, not directly subject to the width and number of the geogrid alone. The varying soil properties and footing size also contribute to both BCR and SRR values supported by the improvement factor calculations. Hence, the output complemented the benefit of applying reinforced soil foundations effectively.
  2. Chan CMH, Ng CG, Taib A, Wee LH, Krupat E, Meyer F
    Cancer, 2018 04 15;124(8):1839-1840.
    PMID: 29499076 DOI: 10.1002/cncr.31281
  3. Suhaizan FS, Mohd Taib A, Taha MR, Hasbollah DZA, Ibrahim A, Dan MFM, et al.
    PLoS One, 2025;20(1):e0316488.
    PMID: 39792898 DOI: 10.1371/journal.pone.0316488
    Rainfall-induced landslides are a frequent geohazard for tropical regions with prevalent residual soils and year-round rainy seasons. The water infiltration into unsaturated soil can be analyzed using the soil-water characteristic curve (SWCC) and permeability function which can be used to monitor and predict incoming landslides, showing the necessity of selecting the appropriate model parameter while fitting the SWCC model. This paper presents a set of data from six different sections of the studied slope at varying depths that are used to test the performance of three SWCC models, the van Genuchten-Mualem (vG-M), Fredlund-Xing (F-X) and Gardner (G). The dataset is obtained from field monitoring of the studied slope, over a duration of 6 months. The study discovered that the van Genuchten-Mualem model provided the best estimation based on RMSE and evaluation metric, R2 followed by Fredlund and Xing, and Gardner, however, the difference between them is minor. The R2 obtained varies as the value at the crest with 1.0 m depth has a mean of 0.44, the lowest among the overall data fitted but it also has the best RMSE value with a mean of 0.00473. Whereas the location mid-section at a depth of 1.0 m has the highest R2 with a mean of 0.97, and an average value of RMSE of 0.0145 which is the middle of the group that was fitted. This indicates that R2 measurement for model performance relies highly on the dispersion of the variables collected. The dispersion of the data set is mainly due to the sensors' inability to detect effectively at exceedingly high matric suction and zero matric suction. The investment in improving the equipment's precision will boost reliability and reduce the number of assumptions as the data is collected from the site rather than laboratory testing.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links