Surfactant solutions have been frequently studied for soil remediation. However, since they are expensive, massive consumption of surfactant solution can constrain their application. Surfactant microbubbles, or colloidal gas aphrons (CGAs), can serve as cost effective alternatives of surfactant solution because the use of CGAs reduce the amount of surfactant consumption. Moreover, CGAs can also improve the contact with the contaminated environment due to their unique surface properties, e.g. containing 40-70% of gas, small size, large interfacial areas, water-like flow properties and buoyant rise velocities. In this review paper, the properties and flow character of CGAs in soil matrix reviewed due to their relevance to soil remediation process. A comprehensive overview of the application of CGAs in flushing off organic pollutants and heavy metals, and carrying oxygen, bacteria and dissolved materials for soil remediation were provided. This paper also highlighted the limitation of CGAs application and important future research scopes.
Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.