MATERIALS AND METHODS: A randomized, 2-treatment, 2-period, 2-sequence, single dose, crossover with a washout period of 2 weeks, was conducted in 24 healthy Thai male volunteers. Blood samples were collected at 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 24, 36, 48, 72 and 96 h following drug administration. Plasma concentrations of risperidone and 9-hydroxyrisperidone were determined using a validated LC-MS-MS method. The pharmacokinetic parameters of risperidone and 9-hydroxyrisperidone were determined using a non-compartmental model.
RESULTS: The geometric means ratios (%) and 90% confidence interval (CI) of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of risperidone were 104.49 % (92.79% - 117.66%), 100.96 % (92.15% - 110.61 %) and 97.99 % (90.72% - 105.85%). The 90% CI of geometric means ratios of the test and reference products for the log-transformed pharmacokinetic parameters, Cmax, AUC0-t and AUC0-inf of 9-hydroxyrisperidone were 97.00%, 96.97% and 97.49%.
CONCLUSIONS: The 90% CI for the geometric means ratios (test/reference) of the log-trasformed Cmax, AUC0-t and AUC0-inf of risperidone and its major active metabolite were within the bioequivalence acceptance criteria of 80% - 125% of the US-FDA.
METHODS: We systematically searched for original research in PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, EMBASE and HuGE Navigator from database inception until January 2018. Studies on association between polymorphism and antineoplastic-induced cardiovascular toxicity in patients treated for cancer of all antineoplastic agents were included except for anthracycline. Case reports, conference abstracts, reviews and non-patient studies were excluded. Data extracted by two independent reviewers were combined with random-effects model and reported according to PRISMA and MOOSE guidelines.
RESULTS: The 35 studies included examined a total of 219 SNPs in 80 genes, 11 antineoplastic and 5 types of cardiovascular toxicities. Meta-analyses showed that human epidermal growth factor receptor 2 (HER2) rs1136201, a risk variants (pooled OR: 2.43; 1.17-5.06, p = 0.018) is a potential predictors for trastuzumab-related cardiotoxicity. Gene dose effect analysis showed number of variant allele may contribute to the risk too.
CONCLUSIONS: This review found that HER2 rs1136201 can have the potential in predicting trastuzumab-related heart failure. As such, further studies are needed to confirm the validity of these results as well as determine the economic aspect of using SNPs prior to its implementation as a clinical practice.
PATIENTS AND METHODS: Eighty-six allopurinol-induced SCARs (i.e. 19 DRESS and 67 SJS/TEN) and 182 allopurinol-tolerant patients were enrolled in the study. The HLA-B*58:01 allele was determined. Clinical and medicinal data were collected.
RESULTS: Results from multivariate analysis showed that only the HLA-B*58:01 and female sex were identified as risk factors of allopurinol-induced SCARs in this Thai population. Patients who carried the HLA-B*58:01 allele were at a higher risk of allopurinol-induced DRESS [odds ratio (OR)=149.2, 95% confidence interval (CI)=24.0-∞, P<1.00×10]. Similar results were observed in allopurinol-induced SJS/TEN (OR=175.0, 95% CI=44.3-690.9, P=1.69×10). The risk of allopurinol-induced SCARs in women was higher than that in men (OR=4.6, 95% CI=1.4-15.6, P=1.44×10). The overall mortality rate of allopurinol-induced SCARs was 11.39% and a higher mortality rate was observed in elderly women.
CONCLUSION: Among the risk factors identified, the HLA-B*58:01 allele had the greatest impact on the development of both phenotypes of allopurinol-induced SCARs in this studied Thai population. In case HLA-B*58:01 genotyping cannot be accessed, close monitoring of allopurinol usage, especially in elderly women with impaired renal function, is necessary to reduce the mortality rate of these life-threatening SCARs.
OBJECTIVE: We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR.
METHODS: We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia.
RESULTS: The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1).
CONCLUSION: This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.