Cities all over the world are edging further into the ocean. Coastal reclamation is a global conservation issue with implications for ocean life, ecosystems, and human well-being. Using Malaysia as a case study, the coastal reclamation trends over three decades (1991-2021) were mapped using Landsat images and Normalized Difference Water Index (NDWI) via the Google Earth Engine platform. The changes in drivers and impacts of these coastal expansions throughout the decades were also reviewed. Twelve out of the 14 states in Malaysia had planned, active, or completed reclamations on their shorelines. Between 1991 and 2021, an absolute area of 82.64 km2 has been or will be reclaimed should all the projects be completed. The most reported driver for coastal expansion in Malaysia is for development and modernization (41 %), followed by rise in human population (20 %), monetary gains from the development of prime land (15 %), and agriculture and aquaculture activities (9 %). Drivers such as reduction of construction costs, financial advantage of prime land, oil and gas, advancement of technology, and tourism (Malaysia My Second Home (MM2H)) had only started occurring within the last decade, while others have been documented since the 1990's. Pollution is the most reported impact (24 %) followed by disruption of livelihoods, sources of income and human well-being (21 %), destruction of natural habitats (17 %), decrease in biodiversity (11 %), changes in landscapes (10 %), erosion / accretion (8 %), threat to tourism industry (6 %), and exposure to wave surges (3 %). Of these, changes in landscape, shoreline alignment, seabed contour, and coastal groundwater, as well as wave surges had only started to surface as impacts in the last two decades. Efforts to protect existing natural coastal and marine ecosystems, restore degraded ones, and fund endeavours that emphasize nature is needed to support sustainable development goals for the benefit of future generations.
The concept of solar geoengineering remains a topic of debate, yet it may be an effective way for cooling the Earth's temperature. Nevertheless, the impact of solar geoengineering on regional or local climate patterns is an active area of research. This study aims to evaluate the impact of solar geoengineering on precipitation and temperature extremes of the Muda River Basin (MRB), a very important agricultural basin situated in the northern Peninsular Malaysia. The analysis utilized the multi-model ensemble mean generated by four models that contributed to the Geoengineering Model Intercomparison Project (GeoMIP6). These models were configured to simulate the solar irradiance reduction (G6solar) and stratospheric sulfate aerosols (G6sulfur) strategies as well as the moderate (SSP245) and high emission (SSP585) experiments. Prior to the computation of extreme indices, a linear scaling approach was employed to bias correct the daily precipitation, maximum and minimum temperatures. The findings show that the G6solar and G6sulfur experiments, particularly the latter, could be effective in holding the increases in both annual and monthly mean precipitation totals and temperature extremes close to the increases projected under SSP245. For example, both G6solar and G6sulfur experiments project increases of temperature over the basin of 2 °C at the end of the 21st century as compared to 3.5 °C under SSP585. The G6solar and G6sulfur experiments also demonstrate some reliability in modulating the increases in precipitation extreme indices associated with flooding to match those under SSP245. However, the G6sulfur experiment may exacerbate dry conditions in the basin, as monthly precipitation is projected to decrease during the dry months from January to May and consecutives dry days are expected to increase, particularly during the 2045-2064 and 2065-2084 periods. Increases dry spells could indirectly affect agricultural and freshwater supplies, and pose considerable challenges to farmers.