Displaying all 2 publications

Abstract:
Sort:
  1. Harighi MF, Wahid H, Thomson PC, Rafii MY, Jesse FFA
    Anim. Reprod. Sci., 2019 Sep;208:106113.
    PMID: 31405472 DOI: 10.1016/j.anireprosci.2019.106113
    Testicular volume (TV) is one of the most important traits used in evaluation of the reproductive capacity of male animals. The levelled-container used in the present study was found to be reliable instrument to measure TV, based on a water displacement method. Sperm-associated antigen 11 (SPAG11) is an important gene that affects male reproductive performance. An objective of the present study, therefore, was to determine if single nucleotide polymorphisms (SNPs) in a fragment of the SPAG11 gene could be used to determine associations with values of testicular biometric variables in Boer goats. Primers were designed to amplify the full length of the first two exons of SPAG11. The targeted fragment was generated using a molecular cloning technique. As the result, four SNPs, [g.1256A > G(ss19199134542), g.1270C > T(ss19199134541), g.1325A > G(ss19199134540) and g.1327 G > A (ss19199134543)], were detected using a single-base extension (SBE) method. Two of these SNPs were synonymous (ss19199134540 and ss19199134542). The other two SNPs were nonsynonymous, thus, there were changes in amino acid in the resulting protein: threonine to isoleucine (for ss19199134541) and arginine to glutamine (for ss19199134543). The SNP ss19199134543 was the only locus detected that was associated with TV (P = 0.002). None of the testes dimensions nor TW were associated with detected SPAG11 gene SNPs. Most likely, the ss19199134543 locus affects tissue structures adjacent to the testes, causing the change in TV. In conclusion, among the studied testicular biometric variables, TV had the greatest potential for preselecting of bucks with desirable semen quality. The use of the levelled-container as a TV measurement approach was an accurate and reliable method.
  2. Mardhati M, González LA, Thomson PC, Clark CEF, García SC
    J Dairy Sci, 2021 Jul;104(7):8202-8213.
    PMID: 33865596 DOI: 10.3168/jds.2020-19912
    Monitoring and detecting individual cows' liveweight (LW) and liveweight change (LWC) are important for estimation of nutritional requirements and health management, and could be useful to measure short-term feed intake, water consumption, defecation, and urination. Walk-over weighing (WOW) systems can facilitate measurements of LW for these purposes, providing automated LW recorded at different times of the day. We conducted a field study to (1) quantify the contribution of feed and water intake, as well as urine and feces excretions, to short-term LWC and (2) determine the feasibility of stationary and WOW scales to detect subtle changes in LW as a result of feed and water intake, urination, and defecation. In this experiment, 10 cows walked through a WOW system and then stood individually on a stationary scale collecting weights at 10 and 3.3 Hz, respectively. Cows were offered 4 kg of feed and 10 kg of water on the stationary scale. For each animal, LW before and after eating and drinking was then calculated using different approaches. Liveweight change was calculated as the difference between the initial and final LW before and after eating and drinking for each statistical measure. The weights of feed intake, water consumption, urination, and defecation were measured and used as predictors of LWC. Urine and feces were collected from individual cows while the cow was on the scale, using a container, and weighed separately. The agreement between LWC measured using either stationary or WOW scales was assessed to determine the sensitivity of the scales to detect subtle changes in LW using the coefficient of determination (R2), Lin's concordance correlation coefficient (CCC), and mean bias. The prediction model showed that most of the regression coefficients were not significantly different from +1.0 for feed and water, or -1.0 for urine and feces. The R2 and CCC values demonstrated a satisfactory agreement between calculated and stationary LWC and values ranged from 0.60 to 0.92 and 0.71 to 0.94, respectively. A moderate agreement was achieved between calculated and automated LWC with R2 and Lin's CCC values of 0.45 to 0.63 and 0.60 to 0.74, respectively. Therefore, results demonstrated that new algorithms and data processing methods need to be continuously explored and improved to obtain accurate measurements of LW to measure changes in LW, especially from WOW scales.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links