Displaying all 3 publications

Abstract:
Sort:
  1. Zakaria Z, Kamarudin SK, Timmiati SN
    Nanoscale Res Lett, 2019 Jan 18;14(1):28.
    PMID: 30659414 DOI: 10.1186/s11671-018-2836-3
    Passive alkaline-direct ethanol fuel cells (alkaline-DEFCs) appear to be suitable for producing sustainable energy for portable devices. However, ethanol crossover is a major challenge for passive alkaline-DEFC systems. This study investigated the performance of a crosslinked quaternized poly (vinyl alcohol)/graphene oxide (QPVA/GO) composite membrane to reduce ethanol permeability, leading in enhancement of passive alkaline-DEFC performance. The chemical and physical structure, morphology, ethanol uptake and permeability, ion exchange capacity, water uptake, and ionic conductivity of the composite membranes were characterized and measured to evaluate their applicability in fuel cells. The transport properties of the membrane were affected by GO loading, with an optimal loading of 15 wt.% and doped with 1 M of KOH showing the lowest ethanol permeability (1.49 × 10-7 cm2 s-1 and 3.65 × 10-7 cm2 s-1 at 30 °C and 60 °C, respectively) and the highest ionic conductivity (1.74 × 10-2 S cm-1 and 6.24 × 10-2 S cm-1 at 30 °C and 60 °C, respectively). In the passive alkaline-DEFCs, the maximum power density was 9.1 mW cm-2, which is higher than commercial Nafion 117/KOH (7.68 mW cm-2) at 30 °C with a 2 M ethanol + 2 M KOH solution. For the 60 °C, the maximum power density of composite membrane achieved was 11.4 mW cm-2.
  2. Ishak NAIM, Kamarudin SK, Timmiati SN, Karim NA, Basri S
    J Adv Res, 2021 Feb;28:63-75.
    PMID: 33364046 DOI: 10.1016/j.jare.2020.06.025
    Platinum is the most commonly used catalyst in fuel cell application. However, platinum is very expensive, thus limits the commercialisation of fuel cell system due to the cost factor. This study introduces a biosynthesis platinum from plant extracts that can reduce the cost of platinum production compared to the conventional method and the hazardous during the production of the catalyst. The biogenic platinum was tested on a Direct Methanol Fuel Cell. Advanced biogenic of Pt nano-cluster was synthesized through a novel and facile of one-pot synthesis bio-reduction derived from natural source in the form of plant extracts as reducing agent. Several selected plant extracts drawn from agricultural waste such as banana peel, pineapple peels and sugarcane bagasse extracts were comparatively evaluated on the ability of phytochemical sources of polyphenols rich for the development of single-step synthesis for Pt NPs. Notably, the biogenic Pt NPs from sugar cane bagasse has superior electro-catalytic activity, the enhanced utilization efficiency of Pt and appreciable stability towards methanol oxidation reaction, whose ECSA value approximates 94.58 m2g-1, mass activity/specific activity (398.20 mAmg-1/0.8471 mA/cm2Pt) which greater than commercial Pt black (158.12 mAmg-1/1.41 mA/cm2Pt).
  3. Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D
    Nanomaterials (Basel), 2022 Nov 02;12(21).
    PMID: 36364653 DOI: 10.3390/nano12213877
    Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links