Displaying all 4 publications

Abstract:
Sort:
  1. Zukerman-Schpector J, Olivato PR, Traesel HJ, Valença J, Rodrigues DN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o3-4.
    PMID: 25705490 DOI: 10.1107/S205698901402550X
    In the title β-thio-carbonyl compound, C16H16O2S, the carbonyl and meth-oxy O atoms are approximately coplanar [O-C-C-O torsion angle = -18.2 (5)°] and syn to each other, and the tolyl ring is orientated to lie over them. The dihedral angle between the planes of the two rings is 44.03 (16)°. In the crystal, supra-molecular chains are formed along the c axis mediated by C-H⋯O inter-actions involving methine and methyl H atoms as donors, with the carbonyl O atom accepting both bonds; these pack with no specific inter-molecular inter-actions between them.
  2. Caracelli I, Zukerman-Schpector J, Traesel HJ, Olivato PR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jun 01;75(Pt 6):816-822.
    PMID: 31391973 DOI: 10.1107/S2056989019006765
    The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo-phen-yl)sulfanyl, benzaldehyde and meth-oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol-ecule is evident about the methine-C-C(carbon-yl) bond as evidenced by the O-C-C-O torsion angle of -20.8 (7)°. The dihedral angle between the bromo-benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra-molecular chains as a result of methyl- and methine-C-H⋯O(carbon-yl) inter-actions. The chains assemble into a three-dimensional architecture without directional inter-actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter-action plots and inter-action energy calculations. These point to the importance of weaker H⋯H and C-H⋯C inter-actions in the consolidation of the structure.
  3. Caracelli I, Zukerman-Schpector J, Traesel HJ, Olivato PR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 May 01;74(Pt 5):703-708.
    PMID: 29850096 DOI: 10.1107/S2056989018006072
    The title compound, C15H13ClO2S, comprises (4-chloro-phen-yl)sulfanyl, benzaldehyde and meth-oxy residues linked at a chiral methine-C atom (the crystal is racemic). A twist in the methine-C-C(carbon-yl) bond [O-C-C-O torsion angle = 19.3 (7)°] leads to a dihedral angle of 22.2 (5)° between the benzaldehyde and methine+meth-oxy residues. The chloro-benzene ring is folded to lie over the O atoms, with the dihedral angle between the benzene rings being 42.9 (2)°. In the crystal, the carbonyl-O atom accepts two C-H⋯O inter-actions with methyl- and methine-C-H atoms being the donors. The result is an helical supra-molecular chain aligned along the c axis; chains pack with no directional inter-actions between them. An analysis of the Hirshfeld surface points to the important contributions of weak H⋯H and C⋯C contacts to the mol-ecular packing.
  4. Caracelli I, Olivato PR, Traesel HJ, Valença J, Rodrigues DN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Sep 01;71(Pt 9):o657-8.
    PMID: 26396889 DOI: 10.1107/S2056989015014565
    In the title β-thio-carbonyl compound, C16H16O3S, the adjacent meth-oxy and carbonyl O atoms are synperiplanar [the O-C-C-O torsion angle is 19.8 (4)°] and are separated by 2.582 (3) Å. The dihedral angle between the rings is 40.11 (16)°, and the meth-oxy group is coplanar with the benzene ring to which it is connected [the C-C-O-C torsion angle is 179.1 (3)°]. The most notable feature of the crystal packing is the formation of methine and methyl C-H⋯O(carbon-yl) inter-actions that lead to a supra-molecular chain with a zigzag topology along the c axis. Chains pack with no specific inter-molecular inter-actions between them.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links