Displaying all 2 publications

Abstract:
Sort:
  1. Jayawardane V, Anggraini V, Tran MV, Mirzababaei M, Syamsir A
    Environ Sci Pollut Res Int, 2024 Nov;31(54):63262-63286.
    PMID: 39480575 DOI: 10.1007/s11356-024-35401-4
    In municipal solid waste (MSW) landfills, biodegradation of the organic MSW fraction results in elevated waste and basal liner temperatures which have the potential to cause the clay component of the basal liner to experience severe moisture loss over time and eventually undergo desiccation cracking. Cracking of the basal liner's clay component would result in an uncontrolled release of contaminants into the surrounding environment and ultimately give rise to a variety of major environmental concerns. Accordingly, this study examined the variation of temperature-moisture profiles along the depth of a compacted clay liner (CCL) exposed to different constant elevated waste temperatures (CETs) in the absence and presence of two heat reduction techniques, respectively. Rockwool insulation layers with varying thicknesses and galvanized steel cooling pipes with varying flowrates were introduced separately as the two heat reduction techniques. Introduction of both techniques led to a significant attenuation of the temperature rise and desiccation experienced by the CCL in the face of different CETs. An increase in rockwool thickness increments led to a progressive reduction of CCL temperature, while an increase in flow rate under turbulent condition did not have a significant influence on the temperature and desiccation reduction of the CCL. Nevertheless, the present study certainly highlights the potential of the two proposed heat reduction techniques to minimize desiccation and consequently increase the service life of CCLs exposed to different elevated temperatures in MSW landfills.
  2. Lee CC, Tran MV, Choo CW, Tan CP, Chiew YS
    Environ Pollut, 2020 Oct;265(Pt A):115058.
    PMID: 32806396 DOI: 10.1016/j.envpol.2020.115058
    Due to the increase of the human population and the rapid industrial growth in the past few decades, air quality monitoring is essential to assess the pollutant levels of an area. However, monitoring air quality in a high-density area like Sunway City, Selangor, Malaysia is challenging due to the limitation of the local monitoring network. To establish a comprehensive data for air pollution in Sunway City, a mobile monitoring campaign was employed around the city area with a duration of approximately 6 months, from September 2018 to March 2019. Measurements of air pollutants such as carbon dioxide (CO2) and nitrogen dioxide (NO2) were performed by using mobile air pollution sensors facilitated with a GPS device. In order to acquire a more in-depth understanding on traffic-related air pollution, the measurement period was divided into two different time blocks, which were morning hours (8 a.m.-12 p.m.) and afternoon hours (3 p.m.-7 p.m.). The data set was analysed by splitting Sunway City into different zones and routes to differentiate the conditions of each region. Meteorological variables such as ambient temperature, relative humidity, and wind speed were studied in line with the pollutant concentrations. The air quality in Sunway City was then compared with various air quality standards such as Malaysian Air Quality Standards and World Health Organisation (WHO) guidelines to understand the risk of exposure to air pollution by the residence in Sunway City.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links