Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.
Magnetic resonance imaging (MRI) of the brain is the most important paraclinical diagnostic test in multiple sclerosis (MS). The appearance of MRI in Asians with MS is not well defined. We retrospectively surveyed the first brain and spinal cord MRI in patients diagnosed to have MS, according to Poser's criteria in seven regions throughout Asia to define the MRI changes among Asians with MS. There were 101 patients with first brain, and 86 with first spinal cord MRI, 66 of whom had both. The brain MRI showed a mean of 17 lesions per patient in T2 weighted images, mostly asymptomatic. Almost all the lesions were in the white matter, particularly in the juxtacortical, deep and periventricular white matter. A third of the lesions were greater than 5 mm, 14% enhanced with gadolinium. There were more supratentorial than infratentorial lesions at a ratio of 7.5: 1. Ninety five percent of the spinal cord lesions were in cervical and thoracic regions, 34% enhanced with gadolinium. The lesions extended over a mean of 3.6 +/- 3.3 vertebral bodies in length. Fifty (50%) of the brain and 54 (63%) of the spinal MRI patients had the optic-spinal form of MS. The MRI of the optic-spinal and classical groups of patients were similar in appearance and distribution, except that the optic-spinal MS patients have fewer brain but longer and more severe spinal cord lesions. In conclusion, the brain and spinal cord MRI of Asian patients with MS was similar to that of the West, although, in this study, Asian MS patients had larger spinal cord lesions.
While the past 2 decades have witnessed an increasing understanding of amyotrophic lateral sclerosis (ALS) arising from East Asia, particularly Japan, South Korea, Taiwan and China, knowledge of ALS throughout the whole of Asia remains limited. Asia represents >50% of the world population, making it host to the largest patient cohort of ALS. Furthermore, Asia represents a diverse population in terms of ethnic, social and cultural backgrounds. In this review, an overview is presented that covers what is currently known of ALS in Asia from basic epidemiology and genetic influences, through to disease characteristics including atypical phenotypes which manifest a predilection for Asians. With the recent establishment of the Pan-Asian Consortium for Treatment and Research in ALS to facilitate collaborations between clinicians and researchers across the region, it is anticipated that Asia and the Pacific will contribute to unravelling the uncertainties in ALS.