The aim of this article is to offer a view of the current status of women in medical physics and biomedical engineering, while focusing on solutions towards gender balance and providing examples of current activities carried out at national and international levels. The International Union of Physical and Engineering Scientists in Medicine is committed to advancing women in science and health and has several initiatives overseen by the Women in Medical Physics and Biomedical Engineering Task Group. Some of the main strategies proposed by the Task Group to attain gender balance are: (a) identify and promote female role models that achieve successful work-life balance, (b) establish programs to develop female leaders, (c) create opportunities for females to increase the international visibility within the scientific community, and (d) establish archives and databases of women in STEM.
As medical technology evolves and patient needs increase, the need for well-trained and highly professional medical physicists (MPs) becomes even more urgent. The roles and responsibilities of MPs in various departments within the hospital are diverse and demanding. It is obvious that training, continuing education and professional development of MPs have become essential. One of the ways for an MP to advance his or her knowledge is to participate in conferences and congresses. Last year, the 22nd International Conference of Medical Physics (ICMP 2016) took place in Bangkok, Thailand. The event attracted 584 delegates with most of the participants coming from Asia. It attracted also delegates from 42 countries. The largest delegations were from Thailand, Japan and South Korea. ICMP 2016 included 367 oral presentations and e-posters, most of these being in the fields of Radiation Therapy, Medical Imaging and Radiation Safety. All abstracts were published as an e-book of Abstracts in a supplement to the official IOMP Journal. Many companies had exhibition stands at ICMP2016, thus allowing the participants to see the latest developments in the medical physics-related industry. The conference included 42 mini-symposia, part of the first "IOMP School" activity, covering various topics of importance for the profession and this special issue follows from the success of the conference.
Mentoring aims to improve careers and create benefits for the participants' personal and professional lives. Mentoring can be an individual or a shared experience for a group, while the mentor's role remains the same in both models. Mentors should increase confidence, teach, inspire, and set examples, helping the mentees to mould their path, contributing to the pursuit of their personal and professional goals. This study aims to report on the experience of early-career medical physics professionals and postgraduate students participating in a global mentoring program and to assess the impact of this activity on their professional development. The objectives of this mentoring program are to develop leadership roles among young medical physicists and to provide guidance and support. An online questionnaire was administered to the mentee participants. The analysis of their responses is reported in this work and the current status of the programme was examined using a SWOT analysis. In general, the mentoring experience had a positive impact on the mentees. The mentors were found especially helpful in the decision-making situations and in other conflicts that may arise with career development. Additionally, the mentees felt that mentoring contributed to the development of leadership skills required for the job market and assist in personal development. This paper concludes that participation of young medical physicists in a mentoring group program is beneficial to their career and therefore should be encouraged.
Increasing use of interventional procedures in cardiology with unknown levels of radiation protection in many countries of Asia-Pacific region necessitates the need for status assessment. The study was part of an International Atomic Energy Agency (IAEA) project for achieving improved radiation protection in interventional cardiology (IC) in developing countries.
The COVID-19 pandemic has forced many people, including those in the fields of science and engineering, to work from home. The new working environment caused by the pandemic is assumed to have a different impact on the amount of work that women and men can do from home. Particularly, if the major burden of child and other types of care is still predominantly on the shoulders of women. As such, a survey was conducted to assess the main issues that biomedical engineers, medical physicists (academics and professionals), and other similar professionals have been facing when working from home during the pandemic. A survey was created and disseminated worldwide. It originated from a committee of International Union for Physical and Engineering Sciences in Medicine (IUPESM; Women in Medical Physics and Biomedical Engineering Task Group) and supported by the Union. The ethics clearance was received from Carleton University. The survey was deployed on the Survey Monkey platform and the results were analyzed using IBM SPSS software. The analyses mainly consisted of frequency of the demographic parameters and the cross-tabulation of gender with all relevant variables describing the impact of work at home. A total of 921 responses from biomedical professions in 76 countries were received: 339 males, 573 females, and nine prefer-not-to-say/other. Regarding marital/partnership status, 85% of males were married or in partnership, and 15% were single, whereas 72% of females were married or in partnership, and 26% were single. More women were working from home during the pandemic (68%) versus 50% of men. More men had access to an office at home (68%) versus 64% for women. The proportion of men spending more than 3 h on child care and schooling per day was 12%, while for women it was 22%; for household duties, 8% of men spent more than 3 h; for women, this was 12.5%. It is interesting to note that 44% of men spent between 1 and 3 h per day on household duties, while for women, it was 55%. The high number of survey responses can be considered excellent. It is interesting to note that men participate in childcare and household duties in a relatively high percentage; although this corresponds to less hours daily than for women. It is far more than can be found 2 and 3 decades ago. This may reflect the situation in the developed countries only-as majority of responses (75%) was received from these countries. It is evident that the burden of childcare and household duties will have a negative impact on the careers of women if the burden is not more similar for both sexes. It is important to recognize that a change in policies of organizations that hire them may be required to provide accommodation and compensation to minimize the negative impact on the professional status and career of men and women who work in STEM fields.
Background/Objectives: Radiography is an essential and low-cost diagnostic method in pulmonary medicine that is used for the early detection and monitoring of lung diseases. An adequate and consistent image quality (IQ) is crucial to ensure accurate diagnosis and effective patient management. This pilot study evaluates the feasibility and effectiveness of the International Atomic Energy Agency (IAEA)'s remote and automated quality control (QC) methodology, which has been tested in multiple imaging centers. Methods: The data, collected between April and December 2022, included 47 longitudinal data sets from 22 digital radiographic units. Participants submitted metadata on the radiography setup, exposure parameters, and imaging modes. The database comprised 968 exposures, each representing multiple image quality parameters and metadata of image acquisition parameters. Python scripts were developed to collate, analyze, and visualize image quality data. Results: The pilot survey identified several critical issues affecting the future implementation of the IAEA method, as follows: (1) difficulty in accessing raw images due to manufacturer restrictions, (2) variability in IQ parameters even among identical X-ray systems and image acquisitions, (3) inconsistencies in phantom construction affecting IQ values, (4) vendor-dependent DICOM tag reporting, and (5) large variability in SNR values compared to other IQ metrics, making SNR less reliable for image quality assessment. Conclusions: Cross-comparisons among radiography systems must be taken with cautious because of the dependence on phantom construction and acquisition mode variations. Awareness of these factors will generate reliable and standardized quality control programs, which are crucial for accurate and fair evaluations, especially in high-frequency chest imaging.