Displaying all 2 publications

Abstract:
Sort:
  1. Chaudhry AR, Ahmed R, Irfan A, Mohamad M, Muhammad S, Ul Haq B, et al.
    J Mol Model, 2016 Oct;22(10):248.
    PMID: 27683259
    Some important optoelectronic properties of naphtho[2,1-b:6,5-b']difuran (DPNDF) and its two derivatives have been limelighted by applying the density functional theory (DFT). Due to their low cost, high stability and earth abundance, the DPNDF and its derivatives are considered as potential organic semiconductor materials for their optoelectronics applications. Highly proficient derivatives are obtained systematically by attaching -CN (cyanide) to DPNDF at various sites. Our calculations indicate that DPNDF has a wide and direct band gap with an energy gap of 3.157 eV. Whereas the band gaps of its derivatives are found to be decreased by 88 meV for derivative "a" and 300 meV for derivative "b" as a consequence of p orbitals present in C and N atoms in derivative structures. The narrowing of the energy gap and density of states for the derivatives of DPNDF in the present investigation suggest that energy gap can be engineered for desirable optoelectronic applications via derivatives designing. Furthermore, their obtained results for optical parameters such as the dielectric and conductivity functions, reflectivity, refractive index, and the extinction coefficients endorses their aptness for optoelectronic applications. Graphical Abstract Real part of dielectric function for derivative "b".
  2. Ul Haq B, Kim SH, Chaudhry AR, AlFaify S, Butt FK, Tahir SA, et al.
    Chemphyschem, 2024 Mar 22.
    PMID: 38517984 DOI: 10.1002/cphc.202300605
    The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the impact of surface functionalization on the behavior of Mn2NX2 (X = O, F) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We observe and elucidate the variations in the physical properties of the Mn2NX2 by employing different surface terminations with F and O functional groups. We found that O-termination results in half-metallic behavior, whereas the N-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light of magnitude 50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NX2-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links