Since the crucial evolutionary change from an aqueous to a terrestrial environment, all living organisms address the primordial task of equilibrating the ingestion/production of water and electrolytes (primarily sodium) with their excretion. In mammals, the final route for the excretion of these elements is mainly through the kidneys, which can eliminate concentrated or diluted urine according to the requirements. Despite their primary role in homeostasis, the kidneys are not able to recover water and solutes lost through other systems. Therefore, the selective stimulation or inhibition of motivational and locomotor behavior becomes essential to initiate the search and acquisition of water and/or sodium from the environment. Indeed, imbalances affecting the osmolality and volume of body fluids are dramatic challenges to the maintenance of hydromineral homeostasis. In addition to behavioral changes, which are integrated in the central nervous system, most of the systemic responses recruited to restore hydroelectrolytic balance are accomplished by coordinated actions of the cardiovascular, autonomic and endocrine systems, which determine the appropriate renal responses. The activation of sequential and redundant mechanisms (involving local and systemic factors) produces accurate and self-limited effector responses. From a physiological point of view, understanding the mechanisms underlying water and sodium balance is intriguing and of great interest for the biomedical sciences. Therefore, the present review will address the biophysical, evolutionary and historical perspectives concerning the integrative neuroendocrine control of hydromineral balance, focusing on the major neural and endocrine systems implicated in the control of water and sodium balance.
The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.