Displaying all 7 publications

Abstract:
Sort:
  1. Vellayappan MV, Jaganathan SK, Muhamad II
    PeerJ, 2016;4:e1388.
    PMID: 26819837 DOI: 10.7717/peerj.1388
    Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface of mPE and HNO3 treated mPE investigated with FTIR revealed no major changes in its functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased porosity and surface roughness. Blood coagulation assays prothrombin time (PT) and activated partial thromboplastin time (APTT) were delayed significantly (P < 0.05) for HNO3 treated mPE. Hemolysis assay and platelet adhesion of the treated surface resulted in the lysis of red blood cells and platelet adherence, respectively indicating improved hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNO3 treated mPE was compared and the result shows no significant difference. Hence, the overall observation suggests that the novel HNO3 treated mPE may hold great promises to be exploited for blood contacting devices like grafts, catheters, and etc.
  2. Jaganathan SK, Vellayappan MV, Narasimhan G, Supriyanto E
    World J Gastroenterol, 2014 Apr 28;20(16):4618-25.
    PMID: 24782614 DOI: 10.3748/wjg.v20.i16.4618
    Colorectal cancer is the second leading cause of cancer-related deaths in the United States. Recent studies prove that though chemotherapeutic agents are being used for the treatment of colon cancer, they become non-effective when the cancer progresses to an invasive stage. Since consumption of certain dietary agents has been linked with various cancers, fruit juices have been investigated for their consistently protective effect against colon cancer. The unique biochemical composition of fruit juices is responsible for their anticancer properties. In this review, the chemo-preventive effect of fruit juices such as pomegranate and citrus juices against colon cancer are discussed. For this purpose, the bioavailability, in vitro and in vivo effects of these fruit juices on colorectal cancer are highlighted. Moreover, there is a scarcity of studies involving human trials to estimate the preventive nature of these juices against colon cancer. This review will support the need for more preclinical tests with these crude juices and their constituents in different colorectal cancer cell lines and also some epidemiological studies in order to have a better understanding and promote pomegranate and citrus juices as crusaders against colon cancer.
  3. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK
    Int J Nanomedicine, 2015;10:4267-77.
    PMID: 26170663 DOI: 10.2147/IJN.S83777
    Neuroregeneration is the regrowth or repair of nervous tissues, cells, or cell products involved in neurodegeneration and inflammatory diseases of the nervous system like Alzheimer's disease and Parkinson's disease. Nowadays, application of nanotechnology is commonly used in developing nanomedicines to advance pharmacokinetics and drug delivery exclusively for central nervous system pathologies. In addition, nanomedical advances are leading to therapies that disrupt disarranged protein aggregation in the central nervous system, deliver functional neuroprotective growth factors, and change the oxidative stress and excitotoxicity of affected neural tissues to regenerate the damaged neurons. Carbon nanotubes and graphene are allotropes of carbon that have been exploited by researchers because of their excellent physical properties and their ability to interface with neurons and neuronal circuits. This review describes the role of carbon nanotubes and graphene in neuroregeneration. In the future, it is hoped that the benefits of nanotechnologies will outweigh their risks, and that the next decade will present huge scope for developing and delivering technologies in the field of neuroscience.
  4. Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, et al.
    Int J Nanomedicine, 2015;10:2785-803.
    PMID: 25897223 DOI: 10.2147/IJN.S80121
    Cardiovascular disease is the leading cause of death across the globe. The use of synthetic materials is indispensable in the treatment of cardiovascular disease. Major drawbacks related to the use of biomaterials are their mechanical properties and biocompatibility, and these have to be circumvented before promoting the material to the market or clinical setting. Revolutionary advancements in nanotechnology have introduced a novel class of materials called nanocomposites which have superior properties for biomedical applications. Recently, there has been a widespread recognition of the nanocomposites utilizing polyhedral oligomeric silsesquioxane, bacterial cellulose, silk fibroin, iron oxide magnetic nanoparticles, and carbon nanotubes in cardiovascular grafts and stents. The unique characteristics of these nanocomposites have led to the development of a wide range of nanostructured copolymers with appreciably enhanced properties, such as improved mechanical, chemical, and physical characteristics suitable for cardiovascular implants. The incorporation of advanced nanocomposite materials in cardiovascular grafts and stents improves hemocompatibility, enhances antithrombogenicity, improves mechanical and surface properties, and decreases the microbial response to the cardiovascular implants. A thorough attempt is made to summarize the various applications of nanocomposites for cardiovascular graft and stent applications. This review will highlight the recent advances in nanocomposites and also address the need of future research in promoting nanocomposites as plausible candidates in a campaign against cardiovascular disease.
  5. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
  6. Jaganathan SK, Vellayappan MV, Narasimhan G, Supriyanto E, Octorina Dewi DE, Narayanan AL, et al.
    World J Gastroenterol, 2014 Dec 7;20(45):17029-36.
    PMID: 25493015 DOI: 10.3748/wjg.v20.i45.17029
    Colon cancer arises due to the conversion of precancerous polyps (benign) found in the inner lining of the colon. Prevention is better than cure, and this is very true with respect to colon cancer. Various epidemiologic studies have linked colorectal cancer with food intake. Apple and berry juices are widely consumed among various ethnicities because of their nutritious values. In this review article, chemopreventive effects of these fruit juices against colon cancer are discussed. Studies dealing with bioavailability, in vitro and in vivo effects of apple and berry juices are emphasized in this article. A thorough literature survey indicated that various phenolic phytochemicals present in these fruit juices have the innate potential to inhibit colon cancer cell lines. This review proposes the need for more preclinical evidence for the effects of fruit juices against different colon cancer cells, and also strives to facilitate clinical studies using these juices in humans in large trials. The conclusion of the review is that these apple and berry juices will be possible candidates in the campaign against colon cancer.
  7. Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, et al.
    Sci Technol Adv Mater, 2015 Jun;16(3):033504.
    PMID: 27877785
    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links