Displaying all 3 publications

Abstract:
Sort:
  1. Daud SS, Ibrahim K, Choong SS, Vengidasan L, Chong LA, Ariffin H
    Anal Biochem, 2010 Feb 15;397(2):181-5.
    PMID: 19822126 DOI: 10.1016/j.ab.2009.10.008
    Following hematopoietic stem cell transplantation (HSCT), it is important to determine whether engraftment is successful and to track the dynamic changes of the graft. Tandem repeats such as minisatellites and microsatellites are currently the most established markers for chimerism application. We have developed a reliable method to quantitatively evaluate engraftment status in post-allogeneic HSCT patients using variable number of tandem repeat (VNTR) markers and "lab-on-a-chip" microfluidic electrophoresis technology. Following identification of an informative marker by conventional polymerase chain reaction (PCR), donor chimerism percentage was calculated based on a standard curve generated from artificially mixed patient-donor DNA-specific alleles in serial dilutions. All PCR products were mixed with commercial gel dye and loaded into Agilent DNA 1000 microfluidic LabChips for DNA sizing and quantitation. In 44 patients, separation of pretransplant and donor DNA fragments was resolved clearly and accomplished rapidly within 30min. Chimerism analysis using this platform is able to detect an amount as low as 6.3% donor DNA with acceptable coefficient of variation values. We also demonstrated concordant chimerism analysis findings using both microchip tandem repeats and real-time PCR quantitation of insertion-deletion polymorphisms. This microchip platform obviates the need for fluorescently labeled primers or any post-PCR sample manipulation. Quantitative monitoring of post-HSCT chimerism status using microfluidic electrophoresis is a useful tool for both large- and small-scale post-HSCT chimerism centers.
  2. Vengidasan L, Yunus MA, Yusoff NM, Yahaya BH, Ismail IS
    Asian Biomed (Res Rev News), 2020 Aug;14(4):159-167.
    PMID: 37551388 DOI: 10.1515/abm-2020-0023
    BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) is essential to produce reduced nicotinamide adenine dinucleotide phosphate, which is required to protect cells against oxidative stress. G6PD deficiency is a genetic variation that may lead to hemolysis with potential consequences, such as kidney failure, and patients often experience low quality of life.

    OBJECTIVES: To establish a simple, efficient, and optimized method to produce a G6PDViangchan variant and characterize the phenotypes of recombinant human wild-type G6PD and G6PDViangchan.

    METHODS: G6PD was amplified by polymerase chain reaction (PCR) from a human cDNA plasmid, and the gene for G6PDViangchan was amplified by initiating a mutation at location 871 (G>A) through site-directed mutagenesis. Protein expression and western blotting were conducted after successful cloning. The enzymatic activity of both proteins was assessed spectrophotometrically after purification.

    RESULTS: Both amplicons were successfully cloned into a pET26b(+) expression vector and transformed into Escherichia coli BL21 (DE3) cells for overexpression as C-terminally histidine-tagged recombinant proteins. Western blotting confirmed that both proteins were successfully produced at similar levels. The enzymes were purified by immobilized metal (Co) affinity chromatography. Postpurification assay of enzyme activity revealed about 2-fold differences in the levels of specific activity between the wild-type G6PD (155.88 U/mg) and G6PDViangchan (81.85 U/mg), which is consistent with earlier reports. Analysis in silico showed that the coding change in G6PDViangchan has a substantial effect on protein folding structure.

    CONCLUSIONS: We successfully cloned, expressed, and purified both wild-type G6PD and G6PDViangchan proteins. Such a protocol may be useful for creating a model system to study G6PD deficiency disease.

  3. Choong SS, Latiff ZA, Mohamed M, Lim LL, Chen KS, Vengidasan L, et al.
    Clin Genet, 2012 Dec;82(6):564-8.
    PMID: 22233476 DOI: 10.1111/j.1399-0004.2012.01841.x
    Li-Fraumeni syndrome (LFS) is a highly penetrant, autosomal dominant disorder where affected individuals carry a 50% risk of developing cancer before 30 years of age. It is most commonly associated with mutations in the tumour suppressor gene, TP53. Adrenocortical carcinoma (ACC) is a very rare paediatric cancer, and up to 80% of affected children are found to carry germline TP53 mutations. Hence, we propose using childhood ACC incidence as selection criteria for referral for TP53 mutation testing, independent of familial cancer history. Under the auspices of the Malaysian Society of Paediatric Haematology-Oncology, four eligible children diagnosed with ACC over a 30-month study period were referred for mutation testing. Three had a germline TP53 mutation. Subsequent TP53 testing in relatives showed two inherited mutations and one de novo mutation. These findings strongly support paediatric ACC as a useful sentinel cancer for initiating a germline TP53/LFS detection programme, particularly in countries where the lack of structured oncogenetic practice precludes the identification of families with LFS features.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links