Displaying all 4 publications

Abstract:
Sort:
  1. Govindaraju K, Badruddin IA, Viswanathan GN, Ramesh SV, Badarudin A
    Phys Med, 2013 May;29(3):225-32.
    PMID: 22704601 DOI: 10.1016/j.ejmp.2012.03.008
    Coronary Artery Disease (CAD) is responsible for most of the deaths in patients with cardiovascular diseases. Diagnostic coronary angiography analysis offers an anatomical knowledge of the severity of the stenosis. The functional or physiological significance is more valuable than the anatomical significance of CAD. Clinicians assess the functional severity of the stenosis by resorting to an invasive measurement of the pressure drop and flow. Hemodynamic parameters, such as pressure wire assessment fractional flow reserve (FFR) or Doppler wire assessment coronary flow reserve (CFR) are well-proven techniques to evaluate the physiological significance of the coronary artery stenosis in the cardiac catheterization laboratory. Between the two techniques mentioned above, the FFR is seen as a very useful index. The presence of guide wire reduces the coronary flow which causes the underestimation of pressure drop across the stenosis which leads to dilemma for the clinicians in the assessment of moderate stenosis. In such condition, the fundamental fluid mechanics is useful in the development of new functional severity parameters such as pressure drop coefficient and lesion flow coefficient. Since the flow takes place in a narrowed artery, the blood behaves as a non-Newtonian fluid. Computational fluid dynamics (CFD) allows a complete coronary flow simulation to study the relationship between the pressure and flow. This paper aims at explaining (i) diagnostic modalities for the evaluation of the CAD and valuable insights regarding FFR in the evaluation of the functional severity of the CAD (ii) the role of fluid dynamics in measuring the severity of CAD.
  2. Govindaraju K, Kamangar S, Badruddin IA, Viswanathan GN, Badarudin A, Salman Ahmed NJ
    Atherosclerosis, 2014 Apr;233(2):630-635.
    PMID: 24549189 DOI: 10.1016/j.atherosclerosis.2014.01.043
    Functional assessment of a coronary artery stenosis severity is generally assessed by fractional flow reserve (FFR), which is calculated from pressure measurements across the stenosis. The purpose of this study is to investigate the effect of porous media of the stenosed arterial wall on this diagnostic parameter. To understand the role of porous media on the diagnostic parameter FFR, a 3D computational simulations of the blood flow in rigid and porous stenotic artery wall models are carried out under steady state and transient conditions for three different percentage area stenoses (AS) corresponding to 70% (moderate), 80% (intermediate), and 90% (severe). Blood was modeled as a non Newtonian fluid. The variations of pressure drop across the stenosis and diagnostic parameter were studied in both models. The FFR decreased in proportion to the increase in the severity of the stenosis. The relationship between the percentage AS and the FFR was non linear and inversely related in both the models. The cut-off value of 0.75 for FFR was observed at 81.89% AS for the rigid artery model whereas 83.61% AS for the porous artery wall model. This study demonstrates that the porous media consideration on the stenotic arterial wall plays a substantial role in defining the cut-off value of FFR. We conclude that the effect of porous media on FFR, could lead to misinterpretation of the functional severity of the stenosis in the region of 81.89 %-83.61% AS.
  3. Govindaraju K, Viswanathan GN, Badruddin IA, Kamangar S, Salman Ahmed NJ, Al-Rashed AA
    Comput Methods Biomech Biomed Engin, 2016 Nov;19(14):1541-9.
    PMID: 27052093 DOI: 10.1080/10255842.2016.1170119
    This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
  4. Kamangar S, Badruddin IA, Govindaraju K, Nik-Ghazali N, Badarudin A, Viswanathan GN, et al.
    Med Biol Eng Comput, 2017 Aug;55(8):1451-1461.
    PMID: 28004229 DOI: 10.1007/s11517-016-1604-8
    The purpose of this study is to investigate the effect of various degrees of percentage stenosis on hemodynamic parameters during the hyperemic flow condition. 3D patient-specific coronary artery models were generated based on the CT scan data using MIMICS-18. Numerical simulation was performed for normal and stenosed coronary artery models of 70, 80 and 90% AS (area stenosis). Pressure, velocity, wall shear stress and fractional flow reserve (FFR) were measured and compared with the normal coronary artery model during the cardiac cycle. The results show that, as the percentage AS increase, the pressure drop increases as compared with the normal coronary artery model. Considerable elevation of velocity was observed as the percentage AS increases. The results also demonstrate a recirculation zone immediate after the stenosis which could lead to further progression of stenosis in the flow-disturbed area. Highest wall shear stress was observed for 90% AS as compared to other models that could result in the rupture of coronary artery. The FFR of 90% AS is found to be considerably low.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links