Displaying all 4 publications

Abstract:
Sort:
  1. Vitus V, Ibrahim F, Wan Kamarul Zaman WS
    Tissue Eng Part C Methods, 2022 10;28(10):529-544.
    PMID: 35350873 DOI: 10.1089/ten.TEC.2021.022333
    Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
  2. Vitus V, Ibrahim F, Wan Kamarul Zaman WS
    Polymers (Basel), 2021 Nov 23;13(23).
    PMID: 34883564 DOI: 10.3390/polym13234058
    A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
  3. Vitus V, Ibrahim F, Shamsuddin SAA, Razali N, Noor Azlan NAB, Zaman WSWK
    Polymers (Basel), 2022 Dec 15;14(24).
    PMID: 36559856 DOI: 10.3390/polym14245489
    Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due to its ease of collection and inexpensive synthesis procedure. The CHAK was fabricated via gelation, rapid freezing, and ethanol immersion and characterised based on their morphology, porosity, Fourier transforms infrared (FTIR), tensile strength, swelling ability, degradability, electrical conductivity, and biocompatibility using Wharton’s jelly-derived mesenchymal stem cells (WJMSCs). The addition of carbon reduced the porosity of the bioscaffold. Via FTIR analysis, the combination of carbon, agar, and KGM was compatible. Among the CHAK, the 3HC bioscaffold displayed the highest tensile strength (62.35 ± 29.12 kPa). The CHAK also showed excellent swelling and water uptake capability. All bioscaffolds demonstrated a slow degradability rate (<50%) after 28 days of incubation, while the electrical conductivity analysis showed that the 3AHC bioscaffold had the highest conductivity compared to other CHAK bioscaffolds. Our findings also showed that the CHAK bioscaffolds were biocompatible with WJMSCs. These findings showed that the CHAK bioscaffolds have potential as bioscaffolds for tissue engineering applications.
  4. Noor Azlan NAB, Vitus V, Nor Rashid N, Nordin F, Tye GJ, Wan Kamarul Zaman WS
    Cell Tissue Res, 2024 Mar;395(3):227-250.
    PMID: 38244032 DOI: 10.1007/s00441-023-03857-4
    The promising field of regenerative medicine is thrilling as it can repair and restore organs for various debilitating diseases. Mesenchymal stem cells are one of the main components in regenerative medicine that work through the release of secretomes. By adopting the use of the secretome in cell-free-based therapy, we may be able to address the challenges faced in cell-based therapy. As one of the components of cell-free-based therapy, secretome has the advantage of a better safety and efficacy profile than mesenchymal stem cells. However, secretome has its challenges that need to be addressed, such as its bioprocessing methods that may impact the secretome content and its mechanisms of action in clinical settings. Effective and standardization of bioprocessing protocols are important to ensure the supply and sustainability of secretomes for clinical applications. This may eventually impact its commercialization and marketability. In this review, the bioprocessing methods and their impacts on the secretome profile and treatment are discussed. This improves understanding of its fundamental aspects leading to potential clinical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links