Skeletal myoblasts have been extensively used to study muscle growth and differentiation, and were recently tested for their application as cell therapy and as a gene delivery system to treat muscle and nonmuscle diseases. However, contamination of fibroblasts in isolated cells from skeletal muscle is one of the long-standing problems for routine expansion. This study aimed to establish a simple one-step process to purify myoblasts and maintain their purity during expansion. Mixed cells were preplated serially on laminin- and collagen type I-coated surfaces in a different array for 5, 10, and 15 min. Immunocytochemical staining with antibodies specific to myoblasts was performed to evaluate myoblast attachment efficiency, purity, and yield. It was found that laminin-coated surface favors the attachment of myoblasts. Highest myoblast purity of 78.9% ± 6.8% was achieved by 5 min of preplating only on the laminin-coated surface with a yield of 56.9% ± 3.3%. Primary cells, isolated from skeletal muscle (n = 4), confirm the enhancement of purity through preplating on laminin-coated surface for 5 min. Subsequent expansion after preplating enhanced myoblast purity due to an increase in myoblast growth than fibroblasts. Myoblast purity of ∼ 98% was achieved when another preplating was performed during passaging. In conclusion, myoblasts can be purified and efficiently expanded in one step by preplating on laminin-coated surface, which is a simple and robust technique.
Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
The use of gelatin microspheres (GMs) as a cell carrier has been extensively researched. One of its limitations is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of crosslinking agents to circumvent the constraint. Thus, this study examines two different methods of crosslinking and their effect on the microsphere's physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical (dehydrothermal [DHT]) and natural (genipin) crosslinking of the three-dimensional (3D) GM. We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in an isotonic solution, at 37°C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the crosslinking treatments. The crosslinked GM demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells. In addition, the crosslinked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that crosslinked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared with non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for crosslinking the GM to promote better cartilage tissue regeneration.
Caffeine is therapeutically effective for treating apnea, cellulite formation, and pain management. It also exhibits neuroprotective and antioxidant activities in different models of Parkinson's disease and Alzheimer's disease. However, caffeine administration in a minimally invasive and sustainable manner through the transdermal route is challenging owing to its hydrophilic nature. Therefore, this study demonstrated a transdermal delivery approach for caffeine by utilizing hydrogel microneedle (MN) as a permeation enhancer. The influence of formulation parameters such as molecular weight (MW) of PMVE/MA (polymethyl vinyl ether/maleic anhydride) copolymer and sodium bicarbonate (NaHCO3) concentration on the swelling kinetics and mechanical integrity of the hydrogel MNs was investigated. In addition, the effect of different MN application methods and needle densities of hydrogel MN on the skin insertion efficiency and penetration depth was also evaluated. The swelling degree at equilibrium percentage (% Seq) recorded for hydrogels fabricated with Gantrez S-97 (MW = 1,500,000 Da) was significantly higher than formulation with Gantrez AN-139 (MW = 1,080,000 Da). Increasing the concentration of NaHCO3 also significantly increased the % Seq. Moreover, a 100% penetration was recorded for both the applicator and combination of applicator and thumb pressure compared with only 11% for thumb pressure alone. The average diameter of micropores created by the applicator method was 62.94 μm, which was significantly lower than the combination of both applicator and thumb pressure MN application (100.53 μm). Based on histological imaging, the penetration depth of hydrogel MN increased as the MN density per array decreased. The hydrogel MN with the optimized formulation and skin insertion parameters was tested for caffeine delivery in an in vitro Franz diffusion cell setup. Approximately 2.9 mg of caffeine was delivered within 24 h, and the drug release profile was best fitted to the Korsmeyer-Peppas model, displaying Super Case II kinetics. In conclusion, a combination of thumb and impact application methods and reduced needle density improved the skin penetration efficiency of hydrogel MNs. The results also show that hydrogel MNs fabricated from 3% w/w NaHCO3 and high MW of copolymer exhibit optimum physical and swelling properties for enhanced transdermal delivery.
Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.
Transforming growth factor-beta 1 (TGF-β1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-β3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-β1 and -β3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-β1 or TGF-β3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p 0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p 0.05). In conclusion, TGF-β1 and TGF-β3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-β1 and TGF-β3. Impact statement Transforming growth factor-beta (TGF-β) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-β1 and -β3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-β1 and TGF-β3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.
The state of host cells is reflected in the cargo carried by their extracellular vesicles (EVs). This makes EV a potential source of biomarkers for human diseases. Piwi-interacting RNA (piRNA) regulates gene expression through epigenetic regulation and post-transcriptional gene silencing. Thus, piRNA profiling in EVs derived from human clinical samples could identify markers that characterize disease stages and unveil their roles in disease pathology. This review aimed to report the expression profiles of EV-derived piRNA (EV-piRNA) in various human samples, as well as their role in each pathology. A systematic review was conducted to collate the findings of human EV-piRNA from original research articles published in indexed scientific journals up to February 16, 2022. Article searches were performed in PubMed, Web of Science, and Scopus databases, using a combination of keywords, including "EV" and "piRNA." A total of 775 nonredundant original articles were identified. After subjecting articles to inclusion and exclusion criteria, 34 articles were accepted for this review. The piRNA expression levels among the small RNA profiles of human-derived EVs range from 0.09% to 43.84%, with the lowest expression level reported in urine-derived EVs and the highest percentage in plasma-derived EVs. Differentially expressed EV-piRNAs have been identified in patients with specific disease conditions compared to their counterparts (healthy control), suggesting an association between piRNA and progression in various diseases. Seven articles identified piRNA putative target genes and/or the pathway enrichment of piRNA target genes, and one study demonstrated a direct role of piRNA candidates in disease pathology. In conclusion, EV-piRNA has been isolated successfully from various human body fluids. EV-piRNA is a new research niche in human disease pathology. The expression profiles of EV-piRNA in various tissue types and disease conditions remain largely unexplored. Furthermore, there is currently a lack of guidelines on piRNA bioinformatics analysis, which could lead to inconsistent results and thus hinder the progression of piRNA discoveries. Finally, the lack of published scientific evidence on the role of EV-piRNA supports the need for future research to focus on the functional analysis of EV-piRNA as part of the route in piRNA discoveries.
Mesenchymal stromal cell(MSCs) has immense potential for use in musculoskeletal tissue regeneration, however, there is still a paucity of evidence on the effect of tenogenic MSCs(TMSC) in tendon healing in vivo. This study aimed to determine the effects of GDF5-induced rbMSCs in infraspinatus tendon healing in a New Zealand White rabbit model. In this study, bone marrow-derived rbMSCs were isolated, and 100 ng/ml GDF5 was used to induce tenogenic differentiation in rbMSC. The effects of GDF5 on rbMSC in vitro were assessed by total collagen assay, gene expression analysis and immunofluorescence staining of tenogenic markers; native tenocytes isolated from rabbit tendon were used as a positive control. In in vivo, a window defect was created on the infraspinatus tendons bilaterally. After three weeks, the rabbits(n=18) were randomly divided into 6 groups and repaired with various interventions: (i)surgical suture; (ii)fibrin glue; (iii)suture and fibrin glue; (iv)suture, fibrin glue and tenocytes(rbTenocyte); (v)suture, fibrin glue and MSCs as well as, (vi)suture, fibrin glue and TMSC. All animals were euthanized at 6 weeks postoperative. The in vitro GDF5-induced rbMSCs (or TMSC) showed increased total collagen expression; augmented scleraxis(SCX) and type-I Collagen(COL-I) mRNA gene expression levels. Immunofluorescence showed similar expression inGDF5-induced rbMSC to that of rbTenocyte. In vivo histological analysis showed progressive tendon healing in TMSC treated group; cells with elongated nuclei aligned parallel to the collagen fibers and the collagen fibers were in more organized orientation, along with macroscopic evidence of tendon callus formation. Significant differences were observed in cell treated groups compared to the non-cell treated groups. Histological scoring showed a significantly enhanced tendon healing in TMSC and MSC treated groups compared to rbTenocyte group. The SCX mRNA expression levels, at 6 weeks following repair, were significantly up-regulated in the TMSC group. Immunofluorescence showed COL-I bundles aligned in parallel orientation; this was further confirmed in AFM imaging. SCX, TNC and TNMD were detected in the TMSC group. In conclusion, GDF5 induces tenogenic differentiation in rbMSCs, and TMSC enhances tendon healing in vivo compared to conventional suture repair.