Displaying all 5 publications

Abstract:
Sort:
  1. Chan HH, Wajidi MF, Zairi J
    J Insect Sci, 2014;14:163.
    PMID: 25399430 DOI: 10.1093/jisesa/ieu025
    Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.
  2. Avicor SW, Wajidi MF, Jaal Z, Yahaya ZS
    Acta Biochim. Pol., 2016;63(2):243-6.
    PMID: 27059016 DOI: 10.18388/abp.2014_909
    Septins belong to GTPases that are involved in vital cellular activities, including cytokinesis. Although present in many organisms, they are yet to be isolated from Aedes albopictus. This study reports for the first time on a serendipitous isolation of a partial septin sequence from Ae. albopictus and its developmental expression profile. The Ae. albopictus partial septin sequence contains 591 nucleotides encoding 197 amino acids. It shares homology with several insect septin genes and has a close phylogenetic relationship with Aedes aegypti and Culex quinquefasciatus septins. The Ae. albopictus septin fragment was differentially expressed in the mosquito's developmental stages, with an increased expression in the adults.
  3. Ibrahim N, Wajidi MF, Yusof MY, Tay ST
    Trop Biomed, 2011 Dec;28(3):668-71.
    PMID: 22433898 MyJurnal
    The increased frequency of antibiotic resistance is known to be associated with the dissemination of integrons in the Enterobacteriaceae. This study determined the prevalence and type of integrons amongst 160 extended-spectrum beta-lactamase producing enterobacterial isolates kept in our culture collection. Integrons were detected in 98(61.3%) isolates, including 28(62.2%) Escherichia coli, 34(64.2%) Klebsiella spp., 27(61.4%), Enterobacter spp. and 9(50.0%) Citrobacter spp. investigated in this study. Restriction analysis of the integron gene fragments revealed that class I integron was the principal integron detected in 92(57.5%) of our isolates. Class II integron was detected in 6(3.8%) of our isolates, while no class III integron was detected in this study. The high rates of integron prevalence particularly of the class I integron in the E. coli and Klebsiella spp. concur with previous studies in other geographical regions. The higher (≥50%) integron prevalence of Citrobacter and Enterobacter isolates comparing to previous studies suggests the potential of these isolates as sources for dissemination of resistance determinants. The finding in this study serves as a basis for further study on the antibiotic resistance mechanisms of enterobacterial species in this teaching hospital.
  4. Avicor SW, Wajidi MF, El-Garj FM, Jaal Z, Yahaya ZS
    Protein J, 2014 Oct;33(5):457-64.
    PMID: 25199940 DOI: 10.1007/s10930-014-9580-z
    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.
  5. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links