Displaying all 3 publications

Abstract:
Sort:
  1. Hardiany NS, Yo EC, Ngadiono E, Wanandi SI
    Malays J Med Sci, 2019 Nov;26(6):35-45.
    PMID: 31908585 DOI: 10.21315/mjms2019.26.6.4
    Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumour and there is no definite cure. It has been suggested that there are significant interactions among mesenchymal stem cells (MSCs), their released factors and tumour cells that ultimately determine GBM's growth pattern. This study aims to analyse the expression of molecules involved in GBM cell apoptotic pathways following treatment with the MSC secretome.

    Methods: A conditioned medium of umbilical cord-derived MSCs (UCMSC-CM) was generated by culturing the cells on serum-free αMEM for 24 h. Following this, human GBM T98G cells were treated with UCMSC-CM for 24 h. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was then performed to measure the mRNA expression of survivin, caspase-9, TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DcR1.

    Results: mRNA expression of caspase-9 in CM-treated T98G cells increased 1.6-fold (P = 0.017), whereas mRNA expression of survivin increased 3.5-fold (P = 0.002). On the other hand, TRAIL protein expression was upregulated (1.2-fold), whereas mRNA expression was downregulated (0.4-fold), in CM-treated cells. Moreover, there was an increase in the mRNA expression of both DR4 (3.5-fold) and DcR1 (1,368.5-fold) in CM-treated cells.

    Conclusion: The UCMSC-CM was able to regulate the expression of molecules involved in GBM cell apoptotic pathways. However, the expression of anti-apoptotic molecules was more upregulated than that of pro-apoptotic molecules.

  2. Wanandi SI, Syahrani RA, Arumsari S, Wideani G, Hardiany NS
    Malays J Med Sci, 2019 Sep;26(5):38-52.
    PMID: 31728117 DOI: 10.21315/mjms2019.26.5.4
    Background: It has been widely reported that breast cancer aggressiveness may be driven by breast cancer stem cells (BCSCs). BCSCs display stemness properties that include self-renewal, tumourigenicity and pluripotency. The regulation of gene expression may have important roles in BCSC stemness and aggressiveness. Thus, the aim of this study was to examine the stemness and aggressiveness gene expression profile of BCSCs compared to MCF-7 and MDA-MB-231 breast cancer cells.

    Methods: Human ALDH1+ BCSCs were grown in serum-free Dulbecco's Modified Eagle Medium (DMEM)/F12, while MCF-7 and MDA-MB-231 were cultured in DMEM supplemented with 10% foetal bovine serum under standard conditions. Total RNA was extracted using the Tripure Isolation Reagent. The relative mRNA expressions of OCT4, ALDH1A1 and CD44 associated with stemness as well as TGF-β1, TβR1, ERα1 and MnSOD associated with aggressiveness in BCSCs and MCF-7 cells were determined using the quantitative real-time PCR (qRT-PCR).

    Results: The mRNA expressions of OCT4 (5.19-fold ± 0.338; P = 0.001), ALDH1A1 (3.67-fold ± 0.523; P = 0.006), CD44 (2.65-fold ± 0.307; P = 0.006), TGF-β1 (22.89-fold ± 6.840; P = 0.015), TβR1 (3.74-fold ± 1.446; P = 0.045) and MnSOD (4.6-fold ± 1.096; P = 0.014) were higher in BCSCs than in MCF-7 but were almost similar to MDA-MB-231 cells. In contrast, the ERα1 expression of BCSCs (0.97-fold ± 0.080; P = 0.392) was similar to MCF-7 cells, indicating that BSCSs are oestrogen-dependent breast cancer cells.

    Conclusion: The oestrogen-dependent BCSCs express stemness and aggressiveness genes at a higher level compared to oestrogen-dependent MCF-7 but are almost similar to oestrogen-independent MDA-MB-231 cells.

  3. Wanandi SI, Ningsih SS, Asikin H, Hosea R, Neolaka GMG
    Malays J Med Sci, 2018 May;25(3):7-16.
    PMID: 30899183 DOI: 10.21315/mjms2018.25.3.2
    The growth of tumour cells is closely related to cancer-associated fibroblasts (CAFs) present within their microenvironment. CAFs, the most abundant cells in tumour stroma, secrete growth factors that play pivotal roles in tumour cell proliferation, metabolism, angiogenesis and metastasis. Tumour cells adapt to rapid environmental changes from normoxia to hypoxia through metabolic interplay with CAFs. In this mini review, we discuss the role of lactate dehydrogenases (LDHs) and monocarboxylate transporters (MCTs) on the metabolic interplay between tumour cells and CAFs under hypoxia compared to normoxia. The LDHs catalyse the interchange of lactate and pyruvate, whereas MCTs facilitate the influx and efflux of monocarboxylates, especially lactate and pyruvate. To sum up, tumour cells switch their metabolic state between glycolysis and oxidative phosphorylation through metabolic interplay with CAFs, which exhibit the Warburg effect under hypoxia and reverse Warburg effect under normoxia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links