Species invasion is an important cause of global biodiversity decline and is often mediated by shifts in environmental conditions such as climate change. To investigate this relationship, a mechanistic Dynamic Energy Budget model (DEB) approach was used to predict how climate change may affect spread of the invasive mussel Mytilopsis sallei, by predicting variation in the total reproductive output of the mussel under different scenarios. To achieve this, the DEB model was forced with present-day satellite data of sea surface temperature (SST) and chlorophyll-a concentration (Chl-a), and SST under two warming RCP scenarios and decreasing current Chl-a levels, to predict future responses. Under both warming scenarios, the DEB model predicted the reproductive output of M. sallei would enhance range extension of the mussel, especially in regions south of the Yangtze River when future declines in Chl-a were reduced by less than 10%, whereas egg production was inhibited when Chl-a decreased by 20-30%. The decrease in SST in the Yangtze River may, however, be a natural barrier to the northward expansion of M. sallei, with colder temperatures resulting in a strong decrease in egg production. Although the invasion path of M. sallei may be inhibited northwards by the Yangtze River, larger geographic regions south of the Yangtze River run the risk of invasion, with subsequent negative impacts on aquaculture through competition for food with farmed bivalves and damaging aquaculture facilities. Using a DEB model approach to characterise the life history traits of M. sallei, therefore, revealed the importance of food availability and temperature on the reproductive output of this mussel and allowed evaluation of the invasion risk for specific regions. DEB is, therefore, a powerful predictive tool for risk management of already established invasive populations and to identify regions with a high potential invasion risk.
Populations at the edge of their species' distribution ranges are typically living at the physiological extreme of the environmental conditions they can tolerate. As a species' response to global change is likely to be largely determined by its physiological performance, subsequent changes in environmental conditions can profoundly influence populations at range edges, resulting in range extensions or retractions. To understand the differential physiological performance among populations at their distribution range edge and center, we measured levels of mRNA for heat shock protein 70 (hsp70) as an indicator of temperature sensitivity in two high-shore littorinid snails, Echinolittorina malaccana and E. radiata, between 1°N to 36°N along the NW Pacific coast. These Echinolittorina snails are extremely heat-tolerant and frequently experience environmental temperatures in excess of 55 °C when emersed. It was assumed that animals exhibiting high temperature sensitivity will synthesize higher levels of mRNA, which will thus lead to higher energetic costs for thermal defense. Populations showed significant geographic variation in temperature sensitivity along their range. Snails at the northern range edge of E. malaccana and southern range edge of E. radiata exhibited higher levels of hsp70 expression than individuals collected from populations at the center of their respective ranges. The high levels of hsp70 mRNA in populations at the edge of a species' distribution range may serve as an adaptive response to locally stressful thermal environments, suggesting populations at the edge of their distribution range are potentially more sensitive to future global warming.