METHODS: A Markov model was developed to estimate the cost and outcomes ambulance replacement strategies over a period of 20 years. The model was tested using two alternative strategies of 10-year and 15-year. Model inputs were derived from published literature and local study. Model development and economic analysis were accomplished using Microsoft Excel 2016. The outcomes generated were costs per year, the number of missed trips and the number of lives saved, in addition to the Incremental Cost-Effectiveness Ratio (ICER). One-Way Deterministic Sensitivity Analysis (DSA) and Probabilistic Sensitivity Analysis (PSA) were conducted to identify the key drivers and to assess the robustness of the model.
RESULTS: Findings showed that the most expensive strategy, which is the implementation of 10 years replacement strategy was more cost-effective than 15 years ambulance replacement strategy, with an ICER of MYR 11,276.61 per life saved. While an additional MYR 13.0 million would be incurred by switching from a 15- to 10-year replacement strategy, this would result in 1,157 deaths averted or additional live saved per year. Sensitivity analysis showed that the utilization of ambulances and the mortality rate of cases unattended by ambulances were the key drivers for the cost-effectiveness of the replacement strategies.
CONCLUSIONS: The cost-effectiveness model developed suggests that an ambulance replacement strategy of every 10 years should be considered by the MOH in planning sustainable EMS. While this model may have its own limitation and may require some modifications to suit the local context, it can be used as a guide for future economic evaluations of ambulance replacement strategies and further exploration of alternative solutions.