Displaying all 3 publications

Abstract:
Sort:
  1. Xiao G, Chen J, Show PL, Yang Q, Ke J, Zhao Q, et al.
    Chemosphere, 2021 Nov;282:130966.
    PMID: 34082314 DOI: 10.1016/j.chemosphere.2021.130966
    Biological methods are promising treatment methods to remove pollutants from wastewater. Recently, microalgae have been proved to be of strong application potential in wastewater treatment. In this study, a microalga - antibiotic treatment system was built to evaluate the treatment capacity of microalgae in antibiotic wastewater. In the group with Chlorella pyrenoidosa, the removal rate of cefradine was 41.47 ± 0.62% after 24 h of treatment, which was 3.4 times higher than that without microalgae (12.37 ± 2.30%). Algal decomposition was the main removal mechanism. Meanwhile, the effect of multiple microalgae species on antibiotic treatment was studied. The removal rates of cefradine by C. pyrenoidosa cultivated in the filtered fluid of Microcystis aeruginosa were 75.48 ± 0.29%, which was significantly higher than those by C. pyrenoidosa only. Those indicated that multiple microalgae species strategy was a potential enhancement strategy for algae-based antibiotic treatment. Finally, amoxicillin and norfloxacin were used to study the treatment potential of this technology for more different kinds antibiotics and the integration of microalgae with activated sludge was also investigated. Amoxicillin can be quickly removed by microalgae, but the removal effect of norfloxacin by microalgae is poor. The refractory antibiotic norfloxacin can be treated by co-culturing microalgae and activated sludge. Those showed the good expansibility of microalgae-based technology. The findings indicated that with microalgae-based antibiotic removal method has good application potential, and combined with other technologies, it can effectively remove the refractory antibiotics.
  2. Wassan S, Dongyan H, Suhail B, Jhanjhi NZ, Xiao G, Ahmed S, et al.
    Digit Health, 2024;10:20552076231220123.
    PMID: 38250147 DOI: 10.1177/20552076231220123
    BACKGROUND: Deep Learning is an AI technology that trains computers to analyze data in an approach similar to the human brain. Deep learning algorithms can find complex patterns in images, text, audio, and other data types to provide accurate predictions and conclusions. Neuronal networks are another name for Deep Learning. These layers are the input, the hidden, and the output of a deep learning model. First, data is taken in by the input layer, and then it is processed by the output layer. Deep Learning has many advantages over traditional machine learning algorithms like a KA-nearest neighbor, support vector algorithms, and regression approaches. Deep learning models can read more complex data than traditional machine learning methods.

    OBJECTIVES: This research aims to find the ideal number of best-hidden layers for the neural network and different activation function variations. The article also thoroughly analyzes how various frameworks can be used to create a comparison or fast neural networks. The final goal of the article is to investigate all such innovative techniques that allow us to speed up the training of neural networks without losing accuracy.

    METHODS: A sample data Set from 2001 was collected by www.Kaggle.com. We can reduce the total number of layers in the deep learning model. This will enable us to use our time. To perform the ReLU activation, we will make use of two layers that are completely connected. If the value being supplied is larger than zero, the ReLU activation will return 0, and else it will output the value being input directly.

    RESULTS: We use multiple parameters to determine the most effective method to test how well our method works. In the next paragraph, we'll discuss how the calculation changes secret-shared Values. By adopting 19 train set features, we train our reliable model to predict healthcare cost's (numerical) target feature. We found that 0.89503 was the best choice because it gave us a good fit (R2) and let us set enough coefficients to 0. To develop our stable model with this Set of parameters, we require 26 iterations. We use an R2 of 0.89503, an MSE of 0.01094, an RMSE of 0.10458, a mean residual deviance of 0.01094, a mean absolute error of 0.07452, and a root mean squared log error of 0.07207. After training the model on the train set, we applied the same parameters to the test set and obtained an R2 of 0.90707, MSE of 0.01045, RMSE of 0.10224, mean residual deviation of 0.01045, MAE of 0.06954, and RMSE of 0.07051, validating our solution approach. The objective value of our secured model is higher than that of the scikit-learn model, although the former performs better on goodness-of-fit criteria. As a result, our protected model performs quite well, marginally outperforming the (very optimized) scikit-learn model. Using a backpropagation algorithm and stochastic gradient descent, deep Learning develops artificial neural systems with several interconnected layers. There may be hidden layers of neurons in the network that have the tanh, rectification, and max-out hyperparameters. Modern features like momentum training, dropout, active learning rate, rate annealed, and L1 or L2 regularization provide exceptional prediction performance. The worldwide model's parameters are multi-threadedly (asynchronously) trained on the data from that node, and the model-based data is then gradually augmented by model averaging over the entire network. The method is executed on a single-node, direct H2O cluster initiated by the operator. The operation is parallel despite there just being a single node involved. The number of threads may be adjusted in the settings menu under Preferences and General. The optimal number of threads for the system is used automatically. Successful predictions in the healthcare data sets are made using the H2O Deep Learning operator. There will be a classification done since its label is binomial. The Splitting Validation operator creates test and training datasets to evaluate the model. By default, the settings of the Deep Learning activator are used. To put it another way, we'll construct two hidden layers, each containing 50 neurons. The Accuracy measure is computed by linking the annotated Sample Set with a Performer (Binominal Classification) operator. Table 3 displays the Deep Learning Model, the labeled data, and the Performance Vector that resulted from the technique.

    CONCLUSIONS: Deep learning algorithms can be used to design systems that report data on patients and deliver warnings to medical applications or electronic health information if there are changes in the patient's health. These systems could be created using deep Learning. This helps verify that patients get the proper effective care at the proper time for each specific patient. A healthcare decision support system was presented using the Internet of Things and deep learning methods. In the proposed system, we examined the capability of integrating deep learning technology into automatic diagnosis and IoT capabilities for faster message exchange over the Internet. We have selected the suitable Neural Network structure (number of best-hidden layers and activation function classes) to construct the e-health system. In addition, the e-health system relied on data from doctors to understand the Neural Network. In the validation method, the total evaluation of the proposed healthcare system for diagnostics provides dependability under various patient conditions. Based on evaluation and simulation findings, a dual hidden layer of feed-forward NN and its neurons store the tanh function more effectively than other NN. To overcome challenges, this study will integrate artificial intelligence with IoT. This study aims to determine the NN's optimal layer counts and activation function variations.

  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links