In this study, a novel glyphosate-degrading shows the ability to reduce molybdenum to
molybdenum blue. The enzyme from this bacterium was partially purified and partially
characterized to ascertain whether the Mo-reducing enzyme from this bacterium shows better or
lower efficiency in reducing molybdenum compared to other Mo-reducing bacterium that only
exhibits a single biotransformation activity. The enzyme was partially purified using ammonium
sulphate fractionation. The Vmax for the electron donating substrate or NADH was at 1.905 nmole
Mo blue/min while the Km was 6.146 mM. The regression coefficient was 0.98. Comparative
assessment with the previously characterized Mo-reducing enzyme from various bacteria showed
that the Mo-reducing enzyme from Burkholderia vietnamiensis strain AQ5-12 showed a lower
enzyme activity.
Contamination of organic xenobiotic pollutants and heavy metals in a contaminated site allows
the use of multiple bacterial degraders or bacteria with the ability to detoxify numerous toxicants
at the same time. A previously isolated SDS- degrading bacterium, Acinetobacter baumannii
strain Serdang 1 was shown to reduce molybdenum to molybdenum-blue. The bacterium works
optimally at pH 6.5, the temperature range between 25 and 34°C with glucose serves as the best
electron donor for molybdate reduction. This bacterium required additional concentration of
phosphate at 5.0 mM and molybdate between 15 and 25 mM. The absorption spectrum of the
molybdenum blue obtained is similar to the molybdenum blue from other earlier reported
molybdate reducing bacteria, as it resembles a reduced phosphomolybdate closely. Ag(i), As(v),
Pb(ii) and Cu(ii) inhibited molybdenum reduction by 57.3, 36.8, 27.7 and 10.9%, respectively, at
1 p.p.m. Acrylamide was efficiently shown to support molybdenum reduction at a lower
efficiency than glucose. Phenol, acrylamide and propionamide could support the growth of this
bacterium independently of molybdenum reduction. This bacterium capability to detoxify several
toxicants is an important tool for bioremediation in the tropical region.
Molybdenum is an emerging pollutant. Bioremediation of this heavy metal is possible by the
mediation of Mo-reducing bacteria. These bacteria contain the Mo-reducing enzymes that can
conver toxic soluble molybdenum into molybdenum blue; a less soluble and less toxic form of the
metal. To date only the enzyme has been purified from only one bacterium. The aim of this study is
to purify the Mo-reducing enzyme from a previously isolated Mo-reducing bacterium Bacillus
pumilus strain Lbna using ammonium sulphate fractionation followed by ion exchange and then
gel filtration. Two clear bands were obtained after the gel filtration step with molecular weights
of 70 and 100 kDa. This indicates that further additional purification methods need to be used
to get a purified fraction. Hence, additional steps of chromatography such as hydroxyapatite or
chromatofocusing techniques can be applied in the future.
The presence of both heavy metals and organic xenobiotic pollutants in a contaminated site
justifies the application of either a multitude of microbial degraders or microorganisms having
the capacity to detoxify a number of pollutants at the same time. Molybdenum is an essential
heavy metal that is toxic to ruminants at a high level. Ruminants such as cow and goats
experience severe hypocuprosis leading to scouring and death at a concentration as low as
several parts per million. In this study, a molybdenum-reducing bacterium with amide-degrading
capacity has been isolated from contaminated soils. The bacterium, using glucose as the best
electron donor reduces molybdenum in the form of sodium molybdate to molybdenum blue. The
maximal pH reduction occurs between 6.0 and 6.3, and the bacterium showed an excellent
reduction in temperatures between 25 and 40 oC. The reduction was maximal at molybdate
concentrations of between 15 and 25 mM. Molybdenum reduction incidentally was inhibited by
several toxic heavy metals. Other carbon sources including toxic xenobiotics such as amides
were screened for their ability to support molybdate reduction. Of all the amides, only
acrylamide can support molybdenum reduction. The other amides; such as acetamide and
propionamide can support growth. Analysis using phylogenetic analysis resulted in a tentative
identification of the bacterium as Pseudomonas sp. strain 135. This bacterium is essential in
remediating sites contaminated with molybdenum, especially in agricultural soil co-contaminated
with acrylamide, a known soil stabilizer.
The issue of heavy metal contamination and toxic xenobiotics has become a rapid global
concern. This has ensured that the bioremediation of these toxicants, which are being carried out
using novel microbes. A bacterium with the ability to reduce molybdenum has been isolated
from contaminated soils and identified as Serratia marcescens strain DR.Y10. The bacterium
reduced molybdenum (sodium molybdate) to molybdenum blue (Mo-blue) optimally at pHs of
between 6.0 and 6.5 and temperatures between 30°C and 37°C. Glucose was the best electron
donor for supporting molybdate reduction followed by sucrose, adonitol, mannose, maltose,
mannitol glycerol, salicin, myo-inositol, sorbitol and trehalose in descending order. Other
requirements include a phosphate concentration of 5 mM and a molybdate concentration of
between 10 and 30 mM. The absorption spectrum of the Mo-blue produced was similar to the
previously isolated Mo-reducing bacterium and closely resembles a reduced phosphomolybdate.
Molybdenum reduction was inhibited by Hg (ii), Ag (i), Cu (ii), and Cr (vi) at 78.9, 69.2, 59.5
and 40.1%, respectively. We also screen for the ability of the bacterium to use various organic
xenobiotics such as phenol, acrylamide, nicotinamide, acetamide, iodoacetamide, propionamide,
acetamide, sodium dodecyl sulfate (SDS) and diesel as electron donor sources for aiding
reduction. The bacterium was also able to grow using amides such as acrylamide, propionamide
and acetamide without molybdenum reduction. The unique ability of the bacterium to detoxify
many toxicants is much in demand, making this bacterium a vital means of bioremediation.