Displaying all 3 publications

Abstract:
Sort:
  1. Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, et al.
    Microb Pathog, 2023 Apr 01;179:106096.
    PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096
    Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
  2. Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, et al.
    Stem Cell Rev Rep, 2024 Apr;20(3):688-721.
    PMID: 38308730 DOI: 10.1007/s12015-024-10687-6
    Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
  3. Sedigh SS, Gholipour A, Zandi M, Saeed BQ, Al-Naqeeb BZT, Al-Tameemi NMA, et al.
    World J Microbiol Biotechnol, 2023 Aug 11;39(10):275.
    PMID: 37563327 DOI: 10.1007/s11274-023-03724-y
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links