The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.
Wound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention. Metal-organic frameworks (MOFs), owning to their peculiar physicochemical characteristics, are now considered a promising class of well-suited porous materials for wound healing in addition to their other biological applications. This detailed literature review provides an overview of the latest developments in MOFs for wound healing applications. We have discussed the synthesis, essential biomedical properties, wound-healing mechanism, MOF-based dressing materials, and their wound-healing applications. The possible major challenges and limitations of MOFs have been discussed, along with conclusions and future perspectives. This overview of the literature review addresses MOFs-based wound healing from several angles and covers the most current developments in the subject. The readers may discover how the MOFs advanced this discipline by producing more inventive, useful, and successful dressings. It influences the development of future generations of biomaterials for the healing and regeneration of skin wounds.