Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Yeang HY
    J. Exp. Bot., 2013 Jul;64(10):2643-52.
    PMID: 23645867 DOI: 10.1093/jxb/ert130
    In photoperiodic flowering, long-day (LD) plants are induced to flower seasonally when the daylight hours are long, whereas flowering in short-day (SD) plants is promoted under short photoperiods. According to the widely accepted external coincidence model, flowering occurs in LD Arabidopsis when the circadian rhythm of the gene CONSTANS (CO) peaks in the afternoon, when it is light during long days but dark when the days are short. Nevertheless, extending this explanation to SD flowering in rice, Oriza sativa, requires LD and SD plants to have 'opposite light requirements' as the CO orthologue in rice, HEADING-DATE1 (Hd1), promotes flowering only under short photoperiods. This report proposes a role of the plant's solar rhythm in promoting seasonal flowering. The interaction between rhythmic genes entrained to the solar clock and those entrained to the circadian clock form the basis of an internal coincidence model that explains both LD and SD flowering equally well. The model invokes no presumption of opposite light requirements between LD and SD plants, and further argues against any specific requirement of either light or darkness for SD flowering. Internal coincidence predicts the inhibition of SD flowering of the rice plant by a night break (a brief interruption of light), while it also provides a plausible explanation for how a judiciously timed night break promotes Arabidopsis flowering even on short days. It is the timing of the light transitions (sunrise and sunset) rather than the duration of light or darkness per se that regulates photoperiod-controlled flowering.
  2. Yeang HY
    Bioessays, 2009 Nov;31(11):1211-8.
    PMID: 19795408 DOI: 10.1002/bies.200900078
    The plant maintains a 24-h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid-day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year-round. Various rhythms that run in-phase and out-of-phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.
  3. Yeang HY
    New Phytol., 2007;175(2):283-9.
    PMID: 17587376
    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
  4. Yeang HY
    Curr Opin Allergy Clin Immunol, 2004 Apr;4(2):99-104.
    PMID: 15021061
    PURPOSE OF REVIEW:
    New allergenic latex proteins have been identified, whereas further information on known latex allergens has emerged in recent years. Although prevalence figures for sensitization to the various latex allergens have been published in several studies in the past, the data have not been collated to facilitate cross-comparison.

    RECENT FINDINGS:
    Salient characteristics of the three most recently identified latex allergens, Hev b 11, 12 and 13 are described, whereas new findings on some of the previously recognized allergens are examined. Hev b 2 is viewed from the standpoint of allergenicity and protein glycosylation, Hev b 4 in relation to its biochemical identity and molecular cloning, Hev b 5 with respect to its recombinant form, and Hev b 6 in connection with conformational IgE epitopes. Reports on sensitization or allergic reaction to purified latex allergens from recent and past work are summarized. The use of latex allergens in latex allergy diagnostics is reviewed and discussed.

    SUMMARY:
    Thirteen latex allergens have been recognized by the International Union of Immunological Societies. Based on the results of published studies, native Hev b 2, recombinant Hev b 5, native or recombinant Hev b 6, native Hev b 13, and possibly native Hev b 4 are the major allergens relevant to latex-sensitized adults. Although there is an increasing tendency to identify and characterize latex allergens largely on the basis of their recombinant forms, not all such recombinant proteins have been fully validated against their native counterparts with respect to clinical significance.
  5. Yeang HY
    Ann. Allergy Asthma Immunol., 2000 Jun;84(6):628-32.
    PMID: 10875493 DOI: 10.1016/S1081-1206(10)62415-5
    BACKGROUND:
    The prevalence of latex-specific IgE computed from the results of serologic assays is commonly thought to reflect, to a greater or lesser extent, the prevalence of latex allergy and its implied risk.

    OBJECTIVE:
    The study examines how imperfect test specificity of in vitro assays influences the precision of latex allergy prevalence that it estimates.

    METHODS:
    Various models encompassing a range of hypothetical test sensitivity and specificity values are investigated to gauge their influence on the estimate of latex allergy prevalence. The models examine these interactions in situations of high or low allergy prevalence.

    RESULTS:
    Serologic latex diagnostic assays with test specificity within the range of those of commercially available assays can greatly overestimate prevalence where the true prevalence is low (eg, of the order of one in 100 or one in 1,000). A formula to correct for errors in prevalence estimates arising from imperfect test sensitivity and specificity of an in vitro assay is presented.

    CONCLUSION:
    While serologic assays for latex IgE pose few hazards to the patient and are useful for confirming the diagnosis of latex allergy, the test results may vastly overestimate the true prevalence of latex allergy and its associated risks in situations where latex allergy is actually rare.
  6. Yeang HY
    Ann. Bot., 2015 Jul;116(1):15-22.
    PMID: 26070640 DOI: 10.1093/aob/mcv070
    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm.
  7. Yeang HY
    Yale J Biol Med, 2019 06;92(2):213-223.
    PMID: 31249482
    The widely held explanation for photoperiod-controlled flowering in long-day plants is largely embodied in the External Coincidence Hypothesis which posits that flowering is induced when activity of a rhythmic gene that regulates it (a putative "flowering gene") occurs in the presence of light. Nevertheless, re-examination of the Arabidopsis flowering data from non 24-hour cycles of Roden et al. suggests that External Coincidence is not tenable if the circadian rhythm of the "flowering gene" were entrained to sunrise as commonly accepted. On the other hand, the hypothesis is supported if circadian cycling of the gene conforms to a solar rhythm, and its entrainment is to midnight on the solar clock. Data available point to flowering being induced by the gene which peaks in its expression between 16 to 19 h after midnight. In the normal 24 h cycle, that would be between 4 p.m. and 7 p.m., regardless of the photoperiod. Such timing of the "flowering gene" expression allows for variable coincidence between gene activity and light, depending on the photoperiod and cycle period. A correlation is found between earliness of flowering and the degree of coincidence of "flowering gene" expression with light (r = 0.88, p<0.01).
  8. Yeang HY, Yusof F, Abdullah L
    Anal. Biochem., 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
  9. Yeang HY, Arif SA, Yusof F, Sunderasan E
    Methods, 2002 May;27(1):32-45.
    PMID: 12079415 DOI: 10.1016/S1046-2023(02)00049-X
    As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.
  10. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, et al.
    J. Exp. Bot., 2007;58(10):2429-40.
    PMID: 17545224
    Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
  11. Sunderasan E, Bahari A, Arif SA, Zainal Z, Hamilton RG, Yeang HY
    Clin. Exp. Allergy, 2005 Nov;35(11):1490-5.
    PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x
    BACKGROUND:
    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information.

    OBJECTIVE:
    We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding.

    METHODS:
    The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients.

    RESULTS:
    The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue.

    CONCLUSION:
    The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
  12. Yeang HY, Chow KS, Yusof F, Arif SA, Chew NP, Loke YH
    J Investig Allergol Clin Immunol, 2000 Jul-Aug;10(4):215-22.
    PMID: 11039838
    Six Hevea brasiliensis latex protein allergens, Hevb 1, Hev b 2, Hev b 3, Hev b 4, and two variants of Hev b 7 (7b and 7c), were purified from Hevea latex, while a seventh protein, Hev b 5, was prepared in recombinant form. The presence of these proteins in glove extracts was indicated by their respective antibodies in the serum of rabbits immunized against the extracts. The relative propensities of IgE binding to the individual latex allergens were compared using sera from latex-allergic patients. IgE recognition of Hev b 4, Hev b 7b, Hev b 5 and Hev b 2 was most frequently encountered, with 75, 61, 31 and 28%, respectively, of the patient sera reacting. Sensitivity to multiple latex proteins was common, and out of the 31 seropositive patients, 23 (74%/ ) had IgE against at least two latex allergens, while 12 (39%) had IgE specific for at least three allergens. Statistical analysis of the data suggested that many patients might have acquired sensitivity to Hev b 2, Hev b 4 and Hev b 7b from a common source. (e.g., from latex products). On the other hand, sensitivity to Hev b 5 and to Hev b 7c were interrelated. It is plausible that sensitivity to these two proteins might have been acquired from sources other than latex products (e.g., from certain foods).
  13. Yeang HY, Ward MA, Zamri AS, Dennis MS, Light DR
    Allergy, 1998 May;53(5):513-9.
    PMID: 9636811
    Separate studies have reported spina bifida patients to be especially allergic to proteins of 27 and 23 kDa found in the serum of centrifuged natural rubber latex. An insoluble latex protein located on the surface of small rubber particles, Hev b 3, has similarly been found to be allergenic to spina bifida patients. In this study, internal amino acid sequences of Hev b 3 showed similarity to the published sequences for the 27- and 23-kDa latex proteins. The latter allergens are hence identified as Hev b 3. Determination of the molecular weight of Hev b 3 revealed various species of 22-23 kDa. The consistent gaps of about 266 Da observed between various forms of the intact protein suggest that the protein undergoes post-translational modification. To determine whether Hev b 3 also occurs in a soluble form in the latex serum, its presence in molecular-filtered serum was checked by ELISA and Western blot. The results showed Hev b 3 to be largely absent in the C-serum from fresh latex. The protein is therefore insoluble in its native state. However, a small amount of the solubilized protein was detected in ammonia-stabilized latex (commonly used in the manufacture of latex products).
  14. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, et al.
    J. Allergy Clin. Immunol., 1996 Sep;98(3):628-39.
    PMID: 8828541 DOI: 10.1016/s0091-6749(96)70097-0
    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.
  15. Wagner B, Krebitz M, Buck D, Niggemann B, Yeang HY, Han KH, et al.
    J. Allergy Clin. Immunol., 1999 Nov;104(5):1084-92.
    PMID: 10550757
    BACKGROUND: Two natural rubber latex proteins, Hev b 1 and Hev b 3, have been described in spina bifida (SB)-associated latex allergy.

    OBJECTIVE: The aim of this study was to clone and express Hev b 3 and to obtain the immunologic active and soluble recombinant allergen for diagnosis of SB-associated latex allergy.

    METHODS: A complementary DNA (cDNA) coding for Hev b 3 was amplified from RNA of fresh latex collected from Malaysian rubber trees (Hevea brasiliensis). PCR primers were designed according to sequences of internal peptide fragments of natural (n) Hev b 3. The 5'-end sequence was obtained by specific amplification of cDNA ends. The recombinant (r) Hev b 3 was produced in Escherichia coli as a 6xHis tagged protein. Immunoblotting and inhibition assays were performed to characterize the recombinant allergen.

    RESULTS: An Hev b 3 cDNA clone of 922 bp encoding a protein of 204 amino acid residues corresponding to a molecular weight of 22.3 kd was obtained. In immunoblots 29/35, latex-allergic patients with SB revealed IgE binding to rHev b 3, as did 4 of 15 of the latex-sensitized group. The presence of all IgE epitopes on rHev b 3 was shown by its ability to abolish all IgE binding to nHev b 3. Hev b 3 is related to Hev b 1 by a sequence identity of 47%. Cross-reactivity between these 2 latex allergens was illustrated by the large extent of inhibition of IgE binding to nHev b 1 by rHev b 3.

    CONCLUSION: rHev b 3 constitutes a suitable in vitro reagent for the diagnosis of latex allergy in patients with SB. The determination of the full sequence of Hev b 3 and the production of the recombinant allergen will allow the epitope mapping and improve diagnostic reagents for latex allergy.

  16. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin. Exp. Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
  17. Johar A, Lim DL, Arif SA, Hawarden D, Toit GD, Weinberg EG, et al.
    Pediatr Allergy Immunol, 2005 Mar;16(2):165-70.
    PMID: 15787875
    Spina bifida children have a high prevalence of latex allergy in studies reported from Europe and the USA. This study investigated the prevalence of latex allergy in a cohort of 24 spina bifida children at the Red Cross Children's Hospital from Cape Town, South Africa. The children were investigated using a detailed questionnaire, skin prick tests (ALK-Abello), ImmunoCap RASTs, Western blotting and ELISA, using the purified latex proteins Hev b1 and Hev b3 and whole latex preparation. A low overall prevalence of latex sensitization of 16.7% was found in the children. Children who were sensitive reacted to water insoluble to Hev b1 and Hev b3 proteins. The low prevalence of latex sensitization in the South African children may not be entirely explained by stringent latex avoidance. The children were from a low socioeconomic social status and 'hygiene' and other factors should be considered.
  18. Yeang HY, Arif SA, Raulf-Heimsoth M, Loke YH, Sander I, Sulong SH, et al.
    J. Allergy Clin. Immunol., 2004 Sep;114(3):593-8.
    PMID: 15356563 DOI: 10.1016/j.jaci.2004.05.039
    BACKGROUND:
    Sensitization to natural rubber latex has been linked to proteins from medical latex gloves. Various assays to estimate the amount of residual allergenic proteins extractable from latex gloves to assess their potential exposure hazard have inherent weaknesses.

    OBJECTIVE:
    This investigation was aimed at developing 2-site immunoenzymetric assays and identifying appropriate protein markers to assess the allergenic potential of latex gloves.

    METHODS:
    The presence of 6 latex allergens--Hev b 1, 2, 3, 5, 6, and 13--was measured in a cross-section of commercial latex medical gloves by using monoclonal and polyclonal antibody-based 2-site immunoenzymetric assays. The overall allergenic potential of these gloves was assessed by IgE-inhibition assay. Stepwise multiple regression analyses were performed to identify marker allergens that best explained the variation in latex glove allergenicity.

    RESULTS:
    All 6 latex allergens were detected in at least some of the glove samples. Hev b 5 and Hev b 13 were identified as the marker allergens that combined best to explain the variation in the glove allergenicity. The significant multiple correlation (R=0.855) between these 2 markers and glove allergenic potency forms the basis of an assay to gauge latex glove allergenicity.

    CONCLUSION:
    The overall allergenic potential of latex gloves can be estimated by using Hev b 5 and Hev b 13 as indicator allergens. The correlation between glove allergenicity and the level of these allergens was maintained for low-protein gloves (<200 microg/g). This estimation of glove allergenicity was superior to that obtained by using total protein readings.
  19. Arif SA, Hamilton RG, Yusof F, Chew NP, Loke YH, Nimkar S, et al.
    J. Biol. Chem., 2004 Jun 4;279(23):23933-41.
    PMID: 15024009
    Recurring reports of a highly allergenic 42-46-kDa protein in Hevea brasiliensis latex appeared to have been resolved with the discovery of a 43-kDa allergenic latex protein that was a homologue to patatin. However, the low to moderate prevalence of sensitization to the protein, designated Hev b 7, among latex-allergic patients could not adequately explain the frequent observations of the 42-46-kDa allergen. This led to the hypothesis that another, more allergenic protein of a similar molecular mass existed in Hevea latex. We report the isolation and purification of a 42.98-kDa latex glycoprotein showing homology to the early nodule-specific protein (ENSP) of the legumes Medicago sativa, Medicago truncatula, and Glycine max. The protein is allergenic, being recognized by immunoglobulin E (IgE) in sera from latex-allergic patients. The IgE epitope resides on the carbohydrate moiety of the protein, and the presence of a similar carbohydrate component on potato tuber patatin enables the latter to inhibit IgE binding to the ENSP homologue. The cDNA encoding the ENSP homologue was isolated by reverse transcription-PCR and cloned. The protein predicted from the cDNA sequence has 391 amino acids, the first 26 of which constitute a putative signal peptide. The deduced molecular mass of the mature protein is 40.40 kDa, while its isoelectric point is estimated at 5.0. The discrepancy between the predicted and observed molecular mass might be due to glycosylation, for which three N-sites on the protein are predicted. The purified protein showed lipase and esterase activities and may be involved in plant defense.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links