Displaying all 2 publications

Abstract:
Sort:
  1. Phan CL, Megat Baharuddin PJ, Chin LP, Zakaria Z, Yegappan S, Sathar J, et al.
    Cancer Genet. Cytogenet., 2008 Jan 1;180(1):60-4.
    PMID: 18068536
    The Philadelphia (Ph) chromosome, or t(9;22), is the hallmark of chronic myelogenous leukemia (CML). It results in juxtaposition of the 5' part of the BCR gene on chromosome 22 to the 3' part of the ABL1 gene (previously ABL) on chromosome 9. CML is clinically characterized by three distinct phases: chronic, accelerated, and blast phase. Blast crisis is characterized by the rapid expansion of a population of differentiation arrested blast cells (myeloid or lymphoid cells population), with secondary chromosomal abnormalities present. We report a case of myeloid blast crisis of CML resistant to imatinib mesylate and chemotherapy. By use of cytogenetic, fluorescence in situ hybridization, and comparative genomic hybridization methods, we identified a cluster of BCR-ABL amplification on inverted duplication of the Ph chromosome with t(3;21)(q26;q22) and increased genomic levels of the RUNX1 gene (previously AML1). The t(3;21)(q26;q22) is a recurrent chromosomal abnormality in some cases of CML blast phase and in treatment-related myelodysplastic syndrome and acute myeloid leukemia. Amplification or copy number increase of RUNX1 has been reported in childhood acute lymphoblastic leukemia. Our study indicated that the progenitor of CML was BCR-ABL dependent through the amplification of Ph chromosome as a mechanism of resistance to imatinib therapy. The coexistence of BCR-ABL and t(3;21)(q26;q22) with RUNX1 rearrangement might play a pivotal role in the CML blast transformation.
  2. Ambayya A, Su AT, Osman NH, Nik-Samsudin NR, Khalid K, Chang KM, et al.
    PLoS One, 2014;9(3):e91968.
    PMID: 24642526 DOI: 10.1371/journal.pone.0091968
    INTRODUCTION: Similar to other populations, full blood count reference (FBC) intervals in Malaysia are generally derived from non-Malaysian subjects. However, numerous studies have shown significant differences between and within populations supporting the need for population specific intervals.

    METHODS: Two thousand seven hundred twenty five apparently healthy adults comprising all ages, both genders and three principal races were recruited through voluntary participation. FBC was performed on two analysers, Sysmex XE-5000 and Unicel DxH 800, in addition to blood smears and haemoglobin analysis. Serum ferritin, soluble transferrin receptor and C-reactive protein assays were performed in selected subjects. All parameters of qualified subjects were tested for normality followed by determination of reference intervals, measures of central tendency and dispersion along with point estimates for each subgroup.

    RESULTS: Complete data was available in 2440 subjects of whom 56% (907 women and 469 men) were included in reference interval calculation. Compared to other populations there were significant differences for haemoglobin, red blood cell count, platelet count and haematocrit in Malaysians. There were differences between men and women, and between younger and older men; unlike in other populations, haemoglobin was similar in younger and older women. However ethnicity and smoking had little impact. 70% of anemia in premenopausal women, 24% in postmenopausal women and 20% of males is attributable to iron deficiency. There was excellent correlation between Sysmex XE-5000 and Unicel DxH 800.

    CONCLUSION: Our data confirms the importance of population specific haematological parameters and supports the need for local guidelines rather than adoption of generalised reference intervals and cut-offs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links