Displaying all 2 publications

Abstract:
Sort:
  1. Manap, A. S. B. A., Vijayabalan, S., Priya Madhavan, Yin, C. Y.
    MyJurnal
    Introduction: Amyloid-β (Aβ) peptides play a key role in the pathogenesis of Alzheimer disease and exert various toxic effects on neurons. Dietary phytochemicals are currently used as an adjuvant therapy to accelerate their therapeutic efficacy. Therefore, the present study was designed to investigate the effect of curcumin and its co-administration with piperine against Aβ42 induced cytotoxicity, fibril aggregation and oxidative damage in SH-SY5Y cells. Methods: The neuroblastoma SH-SY5Y cells were cultured with different treatments of Aβ42, individual curcumin and piperine and combination of curcumin and piperine. Cell viability, Aβ fibril aggregation and oxidative damage such as lipid peroxidation, catalase and glutathione were assessed. The abilities of curcumin and its combination, piperine to scavenge free radicals and to inhibit Aβ aggregation and β-sheeted formation were further assessed. Results: Curcumin and piperine preserves cell viability, which is decreased by Aβ, indicate that curcumin protects Aβ-induced neuronal damage. Under aggregating conditions in vitro, curcumin and piperine inhibited aggregation as well as disaggregated fibrillar Aβ42, indicating favorable stoichiometry for inhibition. Results also showed that curcumin and piperine as a combination was a better Aβ42 aggregation inhibitor than the individual compounds. Curcumin and piperine depresses Aβ-induced up-regulation of neuronal oxidative stress. The ability of these compounds to scavenge free radicals and inhibit the formation of Aβ aggregation are implicated from the results of this study. Conclusion: This combination of curcumin and piperine shows a more protective effect on neuronal oxidative damage when they was added into cultured neurons not later than Aβ, especially prior to Aβ. The curcumin and piperine combination prevents neurons from Aβ-induced oxidative stress, indicating a promising therapeutic in preventive medicine for Alzheimer disease.
  2. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links