Displaying all 2 publications

Abstract:
Sort:
  1. Kawamura G, Bagarinao T, Yong ASK, Noor SN, Lim LS
    Trop Life Sci Res, 2018 Mar;29(1):103-112.
    PMID: 29644018 MyJurnal DOI: 10.21315/tlsr2018.29.1.7
    The effect of low pH on the tactile sense of Macrobrachium rosenbergii postlarvae was determined in the laboratory by means of two behavioural assays: shelter (netting) occupancy and jumping response to touch stimuli (taps) by a glass micropipette. The postlarvae were acclimated to pH 4, pH 5, pH 6 and pH 7.5 (control) in 45 L aquaria 5-7 d before the experiments. Shelter occupancy decreased with pH and was significantly lower at pH 4 and pH 5 than at pH 6 and in the control. The jumping response instantly followed a tap 93-98% of the time in the control, pH 6 and pH 5 treatments. However, the postlarvae showed significantly lower jumping response (65%) at pH 4, indicating an impaired tactile sense. Low pH 4-5 probably degrades the chitin of the sensory setae and inhibits the surface mechanoreceptors of the prawn postlarvae.
  2. Kawamura G, Loke CK, Lim LS, Yong ASK, Mustafa S
    PeerJ, 2021;9:e11248.
    PMID: 33976976 DOI: 10.7717/peerj.11248
    Swimming crabs have a characteristic fifth pair of legs that are flattened into paddles for swimming purposes. The dactyl of these legs bears a thick seta along its edge. The chemoreceptive and feeding properties of the seta are supported with scientific evidence; however, there is no available data on the sensitivity of the setae in portunid crabs. The underlying mechanisms of the chemo- and mechano-sensitivity of appendages and their involvement in feeding activities of the mud crab (Scylla paramamosain) were investigated using electrocardiography and behavioural assay, which focused on the responses of the mud crab to chemical and touch stimulus. Electrocardiography revealed the sensory properties of the appendages. The dactyls of swimming legs and the antennules were chemosensitive, but not mechanosensitive and vice versa for the antennae. However, the mouthparts, claws, and walking legs were chemo- and mechanosensitive. Only the chemosensitive appendages, including the swimming legs, were directly involved in feeding. The flattened dactyls of the swimming legs were more efficient than the pointed dactyls of the walking legs in detecting the food organism crawling on the substrate. The structural features enhanced the capacity of the crab in coming into contact with scattered food items. This study revealed that the swimming legs are important appendages for feeding in the mud crab.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links