Displaying all 3 publications

Abstract:
Sort:
  1. Yu LH, Teh CSJ, Yap KP, Thong KL
    Aquac Int, 2020;28(6):2547-2559.
    PMID: 33013008 DOI: 10.1007/s10499-020-00610-4
    A unique strain of Vibrio parahaemolyticus (designated as VPAHPND) causes acute hepatopancreatic necrosis disease (AHPND), a deadly bacterial disease associated with mass mortality in cultured shrimps since 2009. AHPND is responsible for severe economic losses worldwide, causing multimillion-dollar loss annually. Because of the rapid and high mortality rates in shrimps, substantial research has been carried out to develop rapid detection techniques. Also, recent technological advances such as the next-generation sequencing (NGS) have made it possible to elucidate relevant information about a pathogen in a single assay. This review summarizes the current research pertaining to VPAHPND, focusing on diagnosis and contribution of NGS technologies in the genomic studies of AHPND.
  2. Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL
    Infect Genet Evol, 2020 09;83:104347.
    PMID: 32360538 DOI: 10.1016/j.meegid.2020.104347
    Acute hepatopancreatic necrosis disease (AHPND) is an important shrimp disease of economic importance which causes mass mortality of cultivated penaeid shrimps in Southeast Asian countries, Mexico and South America. This disease was originally caused by Vibrio parahaemolyticus (VPAHPND) which is reported to harbour a transferable plasmid carrying the virulent PirAB-like toxin genes (pirABvp). However, little is known about the pathogenicity of VPAHPND. To extend our understanding, comparative genomic analyses was performed in this study to identify the genetic differences and to understand the phylogenetic relationship of VPAHPND strains. Seven Vibrio parahaemolyticus strains (five VPAHPND strains and two non-VPAHPND strains) were sequenced and 31 draft genomes of V. parahaemolyticus were retrieved from NCBI database and incorporated into the genomic comparison to elucidate their genomic diversity. The study showed that the genome sizes of the VPAHPND strains were approximately 5 Mbp. Ten sequence types (STs) were identified among the VPAHPND strains using in silico-Multilocus Sequence Typing analysis (MLST) and ST 970 was the predominant ST. Phylogenetic analysis based on MLST and single nucleotide polymorphisms (SNP) showed that the VPAHPND strains were genetically diverse. Based on the comparative genomic analysis, several functional proteins were identified from diiferent categories associated with virulence-related proteins, secretory proteins, conserved domain proteins, transporter proteins, and phage proteins. The CRISPR analysis showed that VPAHPND strains contained less number of CRISPRs elements than non-VPAHPND strains while six prophages regions were identified in the genomes, suggested the lack of CRISPR might promote prophage insertion. The genomic information in this study provide improved understanding of the virulence of these VPAHPND strains.
  3. Ngoi ST, Teh CSJ, Chong CW, Abdul Jabar K, Tan SC, Yu LH, et al.
    Antibiotics (Basel), 2021 Feb 11;10(2).
    PMID: 33670224 DOI: 10.3390/antibiotics10020181
    The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76-80%), ticarcillin-clavulanate (58-76%), and piperacillin-tazobactam (48-50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links