Displaying all 2 publications

Abstract:
Sort:
  1. Kalyon B, Tan GY, Pinto JM, Foo CY, Wiese J, Imhoff JF, et al.
    J Antibiot (Tokyo), 2013 Oct;66(10):609-16.
    PMID: 23820614 DOI: 10.1038/ja.2013.53
    Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines.
  2. Hua S, Shah SA, Nsang GEO, Sayyar R, Ullah B, Ullah N, et al.
    J Colloid Interface Sci, 2025 Feb;679(Pt A):487-495.
    PMID: 39374558 DOI: 10.1016/j.jcis.2024.09.219
    The development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm-2, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm-2, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm-2, rivalling the state-of-the-art RuO2/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx2-y2 orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links