Displaying all 3 publications

Abstract:
Sort:
  1. Mudgil P, Kamal H, Yuen GC, Maqsood S
    Food Chem, 2018 Sep 01;259:46-54.
    PMID: 29680061 DOI: 10.1016/j.foodchem.2018.03.082
    In-vitro inhibitory properties of peptides released from camel milk proteins against dipeptidyl peptidase-IV (DPP-IV), porcine pancreatic α-amylase (PPA), and porcine pancreatic lipase (PPL) were studied. Results revealed that upon hydrolysis by different enzymes, camel milk proteins displayed dramatic increase in inhibition of DPP-IV and PPL, but slight improvement in PPA inhibition was noticed. Peptide sequencing revealed a total of 20 and 3 peptides for A9 and B9 hydrolysates respectively, obtained the score of 0.8 or more on peptide ranker and were categorized as potential DPP-IV inhibitory peptides. KDLWDDFKGL in A9 and MPSKPPLL in B9 were identified as most potent PPA inhibitory peptide. For PPL inhibition only 7 and 2 peptides qualified as PPL inhibitory peptides from hydrolysates A9 and B9, respectively. The present study report for the first time PPA and PPL inhibitory and only second for DPP-IV inhibitory potential of protein hydrolysates from camel milk.
  2. Habib MA, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN
    Biochem. Cell Biol., 2017 04;95(2):232-242.
    PMID: 28177774 DOI: 10.1139/bcb-2016-0144
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today's modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
  3. Lee WT, Tan BK, Eng SA, Yuen GC, Chan KL, Sim YK, et al.
    Food Funct, 2019 Sep 01;10(9):5759-5767.
    PMID: 31453615 DOI: 10.1039/c9fo01357a
    A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity. Black sea cucumber (Holothuria atra) is a tropical sea cucumber species traditionally consumed as a remedy for many ailments. There is a paucity of knowledge on the anti-infective capacity of H. atra and the underlying mechanisms involved. The objective of this study is to utilize the Caenorhabditis elegans-P. aeruginosa infection model to elucidate the anti-infective properties of H. atra. A bioactive H. atra extract and subsequently its fraction were shown to have the capability of promoting the survival of C. elegans during a customarily lethal P. aeruginosa infection. The same entities also attenuate the production of elastase, protease, pyocyanin and biofilm in P. aeruginosa. The treatment of infected transgenic lys-7::GFP worms with this H. atra fraction restores the repressed expression of the defense enzyme lys-7, indicating an improved host immunity. QTOF-LCMS analysis revealed the presence of aspidospermatidine, an indole alkaloid, and inosine in this fraction. Collectively, our findings show that H. atra possesses anti-infective properties against P. aeruginosa infection, by inhibiting pathogen virulence and, eventually, reinstating host lys-7 expression.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links