Displaying all 4 publications

Abstract:
Sort:
  1. Tieng FYF, Baharudin R, Abu N, Mohd Yunos RI, Lee LH, Ab Mutalib NS
    Front Pharmacol, 2020;11:135.
    PMID: 32174835 DOI: 10.3389/fphar.2020.00135
    Colorectal cancer (CRC) is among the most common cancer worldwide, a challenge for research, and a model for studying the molecular mechanisms involved in its development. Previously, bulk transcriptomics analyses were utilized to classify CRC based on its distinct molecular and clinicopathological features for prognosis and diagnosis of patients. The introduction of single-cell transcriptomics completely turned the table by enabling the examination of the expression levels of individual cancer cell within a single tumor. In this review, we highlighted the importance of these single-cell transcriptomics analyses as well as suggesting circulating tumor cells (CTCs) as the main focus of single-cell RNA sequencing. Characterization of these cells might reveal the intratumoral heterogeneity present in CRC while providing critical insights into cancer metastasis. To summarize, we believed the analysis of gene expression patterns of CTC from CRC at single-cell resolution holds the potential to provide key information for identification of prognostic and diagnostic markers as well as the development of precise and personalized cancer treatment.
  2. Ab Mutalib NS, Syafruddin SE, Md Zain RR, Mohd Dali AZ, Mohd Yunos RI, Saidin S, et al.
    BMC Res Notes, 2014;7:805.
    PMID: 25404506 DOI: 10.1186/1756-0500-7-805
    High grade serous ovarian cancer is one of the poorly characterized malignancies. This study aimed to elucidate the mutational events in Malaysian patients with high grade serous ovarian cancer by performing targeted sequencing on 50 cancer hotspot genes.
  3. Shafiee MN, Malik DA, Yunos RI, Atiomo W, Omar MH, Ghani NA, et al.
    Gynecol Endocrinol, 2015 Apr;31(4):286-90.
    PMID: 25495168 DOI: 10.3109/09513590.2014.989982
    The aim of this proof-of-concept study was to determine the effects of three-month Metformin therapy on the expression of tumor-regulatory genes (p53, cyclin D2 and BCL-2) in the endometrium of women with polycystic ovary syndrome (PCOS). A total of 40 women, aged between 21 and 45 years with PCOS (Rotterdam criteria) were recruited. The participants were assessed at pre- and 3-month-post-Metformin therapy for the menstrual regularities, weight reduction, Ferriman Galway scores, fasting blood glucose (FBG), total cholesterol, LDL, HDL and p53, BCL-2 and cyclin D2 gene expression. Five participants conceived spontaneously after the initial recruitment. Majority (68%) resumed regular menstrual cycles after Metformin. There were significant reduction in BMI (p = 0.001), weight (p = 0.001) and Ferriman Galway scores (p = 0.001). A significant improvement was seen in mean FBG (p = 0.002), total cholesterol (p = 0.001), LDL (p = 0.003) and HDL cholesterol levels (p = 0.015). Tumor suppressor gene (p53) was significantly up-regulated after Metformin (10 out of 14 women), with p value 0.016. BCL-2 and cyclin D2 (oncogenes) were slightly up-regulated without significant difference (p = 0.119 and 0.155, respectively). In conclusion, Metformin therapy improved clinical and metabolic parameters in women with PCOS and up-regulated p53 tumor suppressor gene significantly. Further studies are however required to independently validate our findings.
  4. Mohd Yunos RI, Ab Mutalib NS, Khoo JS, Saidin S, Ishak M, Syafruddin SE, et al.
    Front Mol Biosci, 2022;9:997747.
    PMID: 36866106 DOI: 10.3389/fmolb.2022.997747
    The incidences of colorectal cancer (CRC) are continuously increasing in some areas of the world, including Malaysia. In this study, we aimed to characterize the landscape of somatic mutations using the whole-genome sequencing approach and identify druggable somatic mutations specific to Malaysian patients. Whole-genome sequencing was performed on the genomic DNA obtained from 50 Malaysian CRC patients' tissues. We discovered the top significantly mutated genes were APC, TP53, KRAS, TCF7L2 and ACVR2A. Four novel, non-synonymous variants were identified in three genes, which were KDM4E, MUC16 and POTED. At least one druggable somatic alteration was identified in 88% of our patients. Among them were two frameshift mutations in RNF43 (G156fs and P192fs) predicted to have responsive effects against the Wnt pathway inhibitor. We found that the exogenous expression of this RNF43 mutation in CRC cells resulted in increased cell proliferation and sensitivity against LGK974 drug treatment and G1 cell cycle arrest. In conclusion, this study uncovered our local CRC patients' genomic landscape and druggable alterations. It also highlighted the role of specific RNF43 frameshift mutations, which unveil the potential of an alternative treatment targeting the Wnt/β-Catenin signalling pathway and could be beneficial, especially to Malaysian CRC patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links