1. Glutathione transferases from the liver, lung and kidney tissues of the buffalo (Bubalus bubalis) and the Kedah-Kelantan cattle (Bos indicus) were partially purified by ammonium sulphate precipitation and Sephadex G-75 gel filtration. 2. Liver tissue contains the highest enzyme activity when compared to the lung and kidney tissues. 3. The activity in cattle is higher than that in the buffalo. 4. Isoelectric focusing separates the activities into the acidic, near neutral and basic fractions. 5. The focused patterns are different for each of the tissues and in each of the species investigated.
A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.
In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.