The effects of logging and recovery process on avian richness and diversity was compared in recently logged and thirty year post-harvested hill dipterocarp tropical rainforest, using mist-netting method. Atotal of 803 bird individuals representing 86 bird species and 29 families (i.e., 37.90% from recently logged forest and 62.10% from thirty year post-harvested forest) were captured from October 2010 to September, 2012. Twenty one bird species were commonly captured from both types of forests, 37 bird species were caught only in thirty year post-harvested forest and 28 bird species were caught only from recently logged forest. Arachnothera longirostra--Little Spiderhunter, Malacopteron magnum--Rufous-crowned Babbler, Alophoixus phaeocephalus -Yellow-bellied Bulbul and Meiglyptes tukki--Buff-necked Woodpecker were the most abundant four bird species in the thirty year post-harvested forest. On the contrary, seven bird species, i.e., Trichastoma rostratum - White-chested Babbler, Lacedo pulchella - Banded Kingfisher, Picus miniaceus--Banded Woodpecker, Enicurus ruficapillus - Chestnut-naped Forktail, Anthreptes simplex--Plain Sunbird, Muscicapella hodgsoni--Pygmy Blue Flycatcher and Otus rufescens--Reddish Scope Owl were considered as the rarest (i.e., each represented only 0.12%). Likewise, A. longirostra, Pycnonotus eythropthalmos - Spectacled Bulbul, P. simplex--Cream-vented Bulbul and Merops viridis--Blue-throated Bee-eater were the most dominant and Copsychus malabaricus--White-rumped Shama Eurylaimus javanicus--Banded Broadbill /xos malaccensis - Streaked Bulbul and Harpactes diardii--Diard's Trogon (each 0.12%) were the rarest bird species in recently logged forest. CAP analysis indicated that avian species in thirty year post-harvested forest were more diverse and evenly distributed than recently logged forest. However, recently logged forest was rich in bird species than thirty year post- harvested forest. The results revealed that logging and retrieval process affect bird species richness and diversity. However, bird species may respond differently from habitat to habitat, i.e., forest logging causes disturbance of some avian species while recovery process may replace the loss of vegetation and harbour a wide array of avian species richness and diversity.
A total of 325 bacteria were isolated from both healthy and sheath blight infected leaf samples of rice plants, collected from different places of Malaysia, following dilution technique. Sheath blight pathogen was isolated from infected samples by tissue plating method. Out of 325, 14 isolates were found to be antagonist against the pathogen in pre evaluation test. All the 14 isolates were morphologically characterized. Antagonistic activity of these isolates was further confirmed by adopting the standard dual culture and extracellular metabolite tests. The best isolates were selected, based on the results. In dual culture test, the selected bacterial isolates KMB25, TMB33, PMB38, UMB20 and BMB42 showed 68.44%, 60.89%, 60.22%, 50.00% and 48.22% fungal growth inhibition, respectively and in extracellular metabolite test these bacterial isolates exhibited 93.33%, 84.26%, 69.82%, 67.96% and 39.26% of the same, respectively. Biochemical tests of selected isolates were performed following standard procedure. These bacterial isolates were tentatively identified as fluorescent pseudomonas by morphological and biochemical characterization. The identities were further confirmed by Biolog microstation system as P. fluorescens (UMB20), P. aeruginosa (KMB25, TMB33 and PMB38) and P. asplenii (BMB42) with similarity index ranging from 0.517 to 0.697. The effective bacterial isolates obtained from the present study can be used in the management of soil borne fungal pathogen Rhizoctonia solani, causing sheath blight of rice.
The morphological expressions and histopathological analysis of the gonads of a tropical marine neogastropod species (Thais sp.) from East Malaysia revealed new evidence of mechanical sterility in the imposex affected females. The gradual development of imposex was classified into five stages (Stage 0 to Stage 4) with three types of sterility conditions; Type A caused prohibition of copulation and capsule formation; Type B prohibits the releasing process of eggs; and gonads in Type C are infertile. Further analysis is needed to confirm, if the gonad malformation in imposex affected snails is generated specifically by tributyltin (TBT) or by other possible factors. The levels of imposex incidence (stages and percentages) were greater in a marina and decreased with increasing distance from the marina. Organotin tissue burden across the sexes showed that dibutyltin (DBT) as well as TBT might be the elements inducing imposex in Thais sp. from Miri in East Malaysia.
Six weed species (Leptochola chinensis, Echinochloa crus-galli, Echinochloa colona, Jussiaea linifolia, Oryza sativa (weedy rice) and Cyperus iria) were tested for their salt tolerant traits in terms of chlorophyll, proline and mineral nutrients accumulation against different salinity levels (0, 4, 8, 16, 24, 32, and 40 dS m(-1)). Chlorophyll a, b and total chlorophyll content, proline and mineral nutrients accumulation were determined. Salt stress showed prominent effect on all the parameters investigated and there were significant variations between the all weed species. Chlorophyll content, K+, Ca(2+) and Mg(2+) ions in both shoots and roots significantly decreased; while proline and Na+ accumulation significantly increased with increasing salinity up to 40 dS m(-1). In terms of overall performance, Cyperus iria and E. crus-galliwere relatively more tolerant; E. colona and J. linifolia were tolerant; L. chinensis and O. sativa L were salt sensitive, respectively.
A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.
Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
Near-real-ime assay is anassay method that the whole process from sampling until results could be obtained in approximately Iess than one hour. The ElIman assay for acetyl cholinesterase (AChE) has near real-time potential due to its simplicity and fast assay time. The commercial acetylcholinesterase from Electrophorus electricus is well known for its uses in insecticides detection. A lesser known fact is AChE is also sensitive to heavy metals. A near real-time inhibitive assay for heavy metals using AChE from this source showed promising results. Several heavy metals such as copper, silver and mercury could be etected with IC50 values of1.212, 0.1185 and 0.097 mg I-1, respectively. The Limits of Detection (LOD) for copper, silver and mercury were 0.01, 0.015 and 0.01 mg I-1, respectively. TheLimits of quantitation (LOQ) or copper, silver and mercury were 0.196, 0.112 and 0.025 mg I-1, respectively. The LOQvalues for copper, silver and mercury were well below the maximum permissible limit for these metal ions as outlined by Malaysian Department of Environment. A polluted location demonstrated near real-time applicability of the assay with variation oftemporal levels of heavy metals detected. The results show that AChE from Electrophorus electricus has the potential to be used as a near real-time biomonitoring tool for heavy
The influence of temperature, moisture and organic matter on the persistence of cyfluthrin was determined using three types of Malaysian soils, namely clay, clay loam and sandy clay loam obtained from a tomato farm in Cameron Highlands, Pahang. The persistence of cyfluthrin was observed in the laboratory at two temperature levels of 25 and 35 degreeC and field water capacity of 30 and 80%. Treated soil samples were incubated in a growth chamber for 1, 2, 3, 5, 7, 10, 14, 21 and 28 days. The results from the incubation studies showed that temperature and organic matter content significantly reduced the half-life (t1/2) values of cyfluthrin in the three soil types, but moisture content had very little effect. It was observed that cyfluthrin persisted longer at lower temperature and moisture content and higher organic matter content in all the three soil types. The present study demonstrated that under the tropical conditions of Malaysia, cyfluthrin dissipated rapidly in soils compared to its dissipation in soils of temperate regions, evidently due to high temperature.
A survey was conducted at 100 different rice fields in coastal areas of West Malaysia to identify most common and prevalent weeds associated with rice. Fields surveyed were done according to the quantitative survey method by using 0.5m x 0.5m size quadrate with 20 samples from each field. A total of 53 different weed species belong to 18 families were identified of which 32 annual and 21 perennial; 12 grassy, 13 sedges and 28 broadleaved weeds. Based on relative abundance the most prevalent and abundant weed species were selected in the coastal rice field. Among the 10 most abundant weed species, there were four grasses viz. Echinochloa crusgalli, Leptochloo chinensis, Echinochloo colona, Oryza sotivo L. (weedy rice).; four sedges viz. Fimbristylis miliacea, Cyperus iria, Cyperus difformis, Scirpus grossus and two broadleaved weeds viz. Sphenocleo zeylonica, Jussiaea linifolio. Leptochloa chinensis, E. crusgalli, F. miliocea, E. colona were more prevalent and abundant species out of the 10 most dominant weed species in the coastal rice field of Peninsular Malaysia.
Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.
An investigation was made to see the salt tolerance of 10 weed species of rice. Properly dried and treated seeds of weed species were placed on 9 cm diameter petridishes lined with Whatman No. 1 filter paper under 6 salinity regimes, viz. 0 (control), 4, 8, 16, 24 and 32 dS m(-1). The petri dishes were then kept in germinator at 25 +/- 1.0 degrees C and 12 hr light. The number of germinated seeds were recorded daily. The final germination percentage, germination index (GI), seedling vigour index, mean germination time and time for 50% germination were estimated. Root and shoot lengths of the weed seedlings were measured at 20 days after salt application and relative growth values were calculated. Results revealed that salinity decreased final germination percentage, seed of germination as measured by GI, and shoot and root length in all the species. Germination of most of the weed seeds was completely arrested (0) at 32 dS m(-1) salinity except in E. colona (12%) and C. iria (13.9%). The species C. iria, E. colona, J. linifolia and E. crusgalli showed better germination (above 30%) upto 24 dS m(-1) salinity level and were regarded as salt-tolerant weed species. J. linifolia, F. miliacea, L. chinensis and O. sativa L. (weedy rice) were graded as moderately tolerant and S. zeylanica, S. grosus and C. difformis were regarded as least tolerant weed species.
Laboratory experiments were conducted to evaluate adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem consisting of the Bernam, Selangor, Rengam and Bongor soil series. The lowest adsorption of metsulfuron-methyl occurred in the Bongor soil (0.366 ml g(-1)), and the highest in the Bemam soil (2.837 ml g(-1). The K(fads) (Freundlich) values of metsulfuron-methyl were 0.366, 0.560, 1.570 and 2.837 ml g(-1) in Bongor, Rengam, Selangor and Bemam soil, respectively. The highest K(fdes) value of metsulfuron-methyl, observed in the Bemam soil, was 2.563 indicating low desorption 0.280 (relatively strong retention). In contrast, the lowest K(fdes) value of 0.564 was observed for the Bongor soil, which had the lowest organic matter (1.43%) and clay content (13.2%). Soil organic matter and clay content were the main factors affecting the adsorption of metsulfuron-methyl. The results of the soil column leaching studies suggested that metsulfuron-methyl has a moderate potential for mobility in the Bernam and Bongor soil series with 19.3% and 39%, respectively for rainfall at 200 mm. However, since metsulfuron-methyl is applied at a very low rate (the maximum field application rate used was 30 g ha(-1)) and is susceptible to biodegradation, the potential forground water contamination is low.
Fresh water, coupled with soil salinization in many areas has resulted in an increased need forscreening of salt tolerant turf grasses. Relative salinity tolerance of eightwarm season turfgrass species were examined in this study in sand culture. Grasses were grown in a glasshouse, irrigated with either distilled water or saline sea water adjusted to 24, 48 or 72 dSm-1. Salt tolerances of the grasses were assessed on the basis of their shoot and root growth, leaf firing and turf quality. Regression analysis indicated that Zoysiajaponica (Japanese lawn grass) (JG), Stenotaphrum secundatum (St. Augustine) (SA), Cynodon dactylon (satiri) (BS), Zoysia teneuifolia (Korean grass) (KG), Digitaria didactyla (Serangoon grass) (SG), Cynodon dactylon (Tifdwarf) (TD), Paspalum notatum (Bahia grass) (BG) and Axonopus compressus(Pearl blue) (PB) suffered a 50% shoot growth reduction at 36.0, 31.8, 30.9, 28.4, 26.4, 25.7, 20.0 and 18.6 dSm1 of salinity, respectively and a root growth reduction at44.9, 43.7, 33.4, 31.0, 29.5 27.5, 21.5 and 21.4 dSm- of salinity, respectively. Leaf firing and turf quality of the selected species, as a whole, were also found to be affected harmoniously with the change in root and shoot growth. On the basis of the experimental results the selected species were ranked for salinity tolerance as JG>SA>BS>KG>SG >TD>BG>PB.
A diesel-degrading bacterium has been isolated from a diesel-polluted site. The isolate was tentatively identified as Staphylococcus aureus strain DRY11 based on partial 16S rDNA molecular phylogeny and Biolog GP microplate panels and Microlog database. Isolate 11 showed an almost linear increase in cellular growth with respect to diesel concentrations with optimum growth occurring at 4% (v/v) diesel concentration. Optimization studies using different nitrogen sources showed that the best nitrogen source was potassium nitrite. Sodium nitrite was optimum at 1.2 g l(-1) and higher concentrations were strongly inhibitory to cellular growth. The optimal pH that supported growth of the bacterium was between 7.5 to 8.0 and the isolate exhibited optimal broad temperature supporting growth on diesel from 27 to 37 degrees C. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 5 days of incubation. The characteristics of this bacterium suggest that it is suitable for bioremediation of diesel spills and pollutions in the tropics.
An inhibitive assay of insecticides using Acetylcholinesterase (AChE) from the local fish Clarias batrachus is reported. AChE was assayed according to the modified method of Ellman. Screening of insecticide and heavy metals showed that carbofuran and carbaryl strongly inhibited C. batrachus AChE. The inhibition concentration (IC) IC50 values (and the 95% confidence interval) for both carbofuran and carbaryl inhibition on C. batrachus AChE at 6.66 (5.97-7.52) and 130.00 (119.3-142.5) microg l(-1), respectively was within the IC50 range of Electrophorus electricus at 6.20 (6.03-6.39) and 133.01 (122.40-145.50) microg l(-1), respectively and were much lower than bovine AChE at 20.94 (19.53-22.58) and 418.80 (390.60-451.60) microg l(-1), respectively. The results showed that C. batrachus have the potential to be used as a cheaper and more readily available source of AChE than other more commercially available sources.
Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively.
The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens.
The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.