Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the drought-tolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress.
Induced mutation for the creation of desirable traits through chronic gamma irradiation provides an opportunity for the selection and development of new chili varieties. This study was conducted to assess the effects of different doses of chronic gamma irradiation on morpho-physiological traits in chili. Ten plants from each variety were exposed to different doses of chronic gamma irradiation for 277.02 h at three weeks after germination under gamma greenhouse facilities, with accumulative dose; 185.61Gy, 83.11Gy, 47.096Gy, 30.474Gy, 19.4Gy, 13.9Gy, 11.1Gy, 8.31Gy, 5.54Gy) and 2.77Gy respectively. Highly significant differences were observed among doses (Rings) of chronic gamma irradiation expressed in mean values for all investigated traits. Relatively moderate doses of chronic gamma irradiation represented by doses 47.096 Gy (Ring 4) and 19.40 Gy (Ring 6) resulted in significant stimulation for most of the studied characters. The highest heritability was recorded in days to flowering at 99.88 while the lowest was observed in fruit dry weight at 34.66 %. High genetic advance were recorded for most of the quantitative traits studied. In addition, a highly significant positive correlation was observed between total fruit per plant, total number of fruit per plant, plant height, fruit fresh weight, number of secondary branches, chlorophyll a, fruit dry weight, total chlorophyll content, stem diameter, fruit length and fruit girth. With increasing chronic gamma dose, mutagenic efficiency and efficacy generally increased. Induced variety of desirable features will considerably increase the chilli's amelioration through mutation breeding, leading to the development of improved varieties. The results of this research offer valuable information for the use of chronic gamma radiation in the mutations breeding of Capsicum annuum L., which will be advantageous for future breeding programs.
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.