Displaying all 2 publications

Abstract:
Sort:
  1. C.G. Ching, Leonard Lu, C.I. Ang, P.K. Ooi, S.S. Ng, Z. Hassan, et al.
    Sains Malaysiana, 2013;42:1327-1332.
    The present study reports on the fabrication of porous zinc oxide by wet chemical etching. ZnO thin films were deposited via radio-frequency magnetron sputtering on p-type silicon with (111) preferred orientation. The etchants used in the present work were 0.1% and 1.0% nitric acid (HNO3) solutions. ZnO were etched at various times and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy to allow the examination of their structural and optical properties. The XRD results revealed that the intensity of ZnO(002) decreased when the thin films were etched in varying HNO3 concentrations over different periods of time. The above observation is attributed to the dissolution of the ZnO(002). The SEM images showed that the thickness of the ZnO layers decreased over the etching time, which resulted from the isotropic etching by the HNO3 solution. The PL emission intensity initially increased with increasing etching time. However, with further etching of the samples, the PL spectra showed a decreasing trend in intensity as a result of the decrease in the surface-to-volume ratio. All results lead to the conclusion that 1.0% HNO3 has the capability to change the ZnO surface significantly.
  2. M.E.A. Samsudin, M. Ikram Md Taib, N. Zainal, R. Radzali, S. Yaakob, Z. Hassan
    Sains Malaysiana, 2013;42:1333-1337.
    A number of n-type Si (100) samples were prepared into porous structures via electrochemical etching process, using an electrolyte solution; HF and ethanol. The morphological properties of the samples were observed under scanning electron microscope measurement. The results showed that the pore density, pore uniformity distribution and pore size of the porous Si samples increased with time of etching. In the next stage, H2O2 was introduced into the electrolyte solution in order to investigate its effect on the morphological properties of the porous Si. From the experiment, we found that H2O2 gave finer porous structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted smoother surface of the pore walls. Hence, the results showed that such porous Si structure could be used as a better substrate for the subsequent layer, in particular for the growth of cubic material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links