Displaying all 2 publications

Abstract:
Sort:
  1. Li Y, Wang Y, Liu Z, Zainal Abidin IM, Chen Z
    Sensors (Basel), 2019 Sep 23;19(19).
    PMID: 31547499 DOI: 10.3390/s19194102
    The cladded conductor is broadly utilized in engineering fields, such as aerospace, energy, and petrochemical; however, it is vulnerable to thickness loss occurring in the clad layer and nonconductive protection coating due to abrasive and corrosive environments. Such a flaw severely undermines the integrity and safety of the mechanical structures. Therefore, evaluating the thickness loss hidden inside cladded conductors via reliable nondestructive evaluation techniques is imperative. This paper intensively investigates the pulse-modulation eddy current technique (PMEC) for the assessment of thickness loss in a cladded conductor. An analytical model of the ferrite-cored probe is established for analyzing PMEC signals and characteristics of lift-off intersection (LOI) in testing signals. Experiments are conducted for evaluation of the thickness loss in cladded conductors. An inverse scheme based on LOI for estimation of the thickness-loss depth is proposed and further verified. Through simulations and experiments, it is found that the influences of the thickness loss in the clad layer and protective coating on the PMEC signals can be decoupled in virtue of the LOI characteristics. Based on LOI, the hidden thickness loss can be efficiently evaluated without much of a reduction in accuracy by using the PMEC probe for dedicated inspection of the cladded conductor.
  2. Li Y, Ren S, Yan B, Zainal Abidin IM, Wang Y
    Sensors (Basel), 2017 Jul 31;17(8).
    PMID: 28758985 DOI: 10.3390/s17081747
    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links