Displaying all 2 publications

  1. Suherman H, Dweiri R, Sulong AB, Zakaria MY, Mahyoedin Y
    Polymers (Basel), 2022 Jan 27;14(3).
    PMID: 35160491 DOI: 10.3390/polym14030502
    This study aims to improve the electrical-mechanical performance of traditional epoxy/graphite composites for engineering applications. The improvement in the properties of these composites depended on the incorporation of different sizes of graphite particles of the same type and controlling their curing process conditions. The thermal properties and microstructural changes were also characterized. A maximum in-plane electrical conductivity value of approximately 23 S/cm was reported for composites containing 80 wt.% G with a particle size of 150 µm. The effect of combining large and small G particles increased this value to approximately 32 S/cm by replacing the large particle size with 10 wt.% smaller particles (75 µm). A further increase in the electrical conductivity to approximately 50 S/cm was achieved due to the increase in curing temperature and time. Increasing the curing temperature or time also had a crucial role in improving the tensile strength of the composites and a tensile strength of ~19 MPa was reported using a system of multiple filler particle sizes processed at the highest curing temperature and time compared to ~9 MPa for epoxy/G150 at 80 wt.%. TGA analysis showed that the composites are thermally stable, and stability was improved by the addition of filler to the resin. A slight difference in the degraded weights and the glass transition temperatures between composites of different multiple filler particle sizes was also observed from the TGA and DSC results.
  2. Zakaria MY, Sulong AB, Muhamad N, Raza MR, Ramli MI
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:884-895.
    PMID: 30678979 DOI: 10.1016/j.msec.2018.12.056
    Titanium-ceramic composites are potential implant material candidates because of their unique mechanical properties and biocompatibility. This review focused on the latest advancement in processing of titanium-ceramic materials. Previously, titanium-ceramic incorporated using different coating techniques, i.e., plasma spraying and electrophoretic depositions, to enhance the biocompatibility of the implants. A major drawback in these coating methods is the growth of tissue at only the surface of the composite and might peel off over time. Recently, metal-ceramic composite was introduced via powder metallurgy method such as powder injection moulding. A porous structure can be obtained via powder metallurgy. Producing a porous titanium-ceramic structure would improve the mechanical properties, biocompatibility and tissue growth within the structure. Hence, further research needed to be done by considering the potential of powder injection moulding method which offer lower costs and more complex shapes for future implant.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links