Displaying all 3 publications

Abstract:
Sort:
  1. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2018 Oct 24;8(11).
    PMID: 30352971 DOI: 10.3390/nano8110874
    The synergistic effect of using κ-carrageenan bionanocomposites with the hybridization of cellulose nanocrystals (CNCs) and organically modified montmorillonite (OMMT) reinforcements was studied. The effects of different reinforcements and filler contents were evaluated through mechanical testing, and morphological and water uptake properties. The tensile strength and Young's modulus of both bionanocomposites increased with filler loading and optimized at 4%. OMMT incorporation into the κ-carrageenan/CNCs bionanocomposites resulted in further mechanical property improvement with an optimum ratio of 1:1 (CNCs:OMMT) while maintaining high film transparency. X-ray diffraction and morphological analyses revealed that intercalation occurred between the κ-carrageenan bionanocomposite matrix and OMMT. The water uptake of the κ-carrageenan bionanocomposites was significantly reduced by the addition of both CNCs and OMMT. The enhancements in the mechanical properties and performance of the hybrid bionanocomposite indicate compatibility among the reinforcement, biopolymer, and well-dispersed nanoparticles. This renders the hybrid CNC/OMMT/κ-carrageenan nanocomposites extremely promising for food packaging applications.
  2. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2019 Oct 31;9(11).
    PMID: 31683602 DOI: 10.3390/nano9111547
    Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs). Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT, and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal stability of all composites were investigated using rotational rheometry, thermogravimetry analysis, differential scanning calorimetry, field emission scanning electron microscopy, and transmission electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite exhibited significantly improved properties as compared to those for the bio-nanocomposites with single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized CNCs/OMMT to 275 °C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good affinity through interfacial interactions, resulting in the improvement of the material properties.
  3. Zakuwan SZ, Ahmad I, Abu Tahrim N, Mohamed F
    Polymers (Basel), 2021 Apr 06;13(7).
    PMID: 33917600 DOI: 10.3390/polym13071176
    In this study, we fabricated a modified biomaterial based on chitosan and gelatin, which is an intrinsic hydrophilic membrane for oil-water separation to clean water contamination by oil. Modification of the membrane with a non-toxic natural crosslinker, genipin, significantly enhanced the stability of the biopolymer membrane in a water-based medium towards an eco-friendly environment. The effects of various compositions of genipin-crosslinked chitosan-gelatin membrane on the rheological properties, thermal stability, and morphological structure of the membrane were investigated using a dynamic rotational rheometer, thermogravimetry analysis, and chemical composition by attenuated total reflectance spectroscopy (ATR). Modified chitosan-gelatin membrane showed completely miscible blends, as determined by field-emission scanning electron microscopy, differential scanning calorimetry, and ATR. Morphological results showed membrane with establish microstructure to further experiment as filtration product. The membranes were successfully tested for their oil-water separation efficiencies. The membrane proved to be selective and effective in separating water from an oil-water mixture. The optimum results achieved a stable microporous structure of the membrane (microfiltration) and a separation efficiency of above 98%. The membrane showed a high permeation flux, generated as high as 698 and 420 L m-2 h-1 for cooking and crude oils, respectively. Owing to its outstanding recyclability and anti-fouling performance, the membrane can be washed away easily, ensuring the reusability of the prepared membrane.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links