Displaying all 9 publications

Abstract:
Sort:
  1. Qamaruz-Zaman N, Milke MW
    Waste Manag, 2012 Dec;32(12):2426-30.
    PMID: 22819598 DOI: 10.1016/j.wasman.2012.06.023
    Research was conducted to determine suitable chemical parameters as indicators of odor from decomposing food wastes. Prepared food scraps were stored in 18 l plastic buckets (2 kg wet weight each) at 20 °C and 8 °C to reproduce high and low temperature conditions. After 1, 3, 7, 10 and 14 days of storage, the odor from the buckets were marked to an intensity scale of 0 (no odor) to 5 (intense) and the corresponding leachate analyzed for volatile fatty acids, ammonia and total organic carbon. A linear relationship between odor intensity and the measured parameter indicates a suitable odor indicator. Odor intensified with longer storage period and warmer surroundings. The study found ammonia and isovaleric acid to be promising odor indicators. For this food waste mixture, offensive odors were emitted if the ammonia and isovaleric acid contents exceeded 360 mg/l and 940 mg/l, respectively.
  2. Qamaruz-Zaman N, Kun Y, Rosli RN
    Waste Manag, 2015 Jan;35:187-90.
    PMID: 25445259 DOI: 10.1016/j.wasman.2014.09.017
    Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.
  3. Kamaru Zaman NH, Mohd Shah NS, Hussein SZ
    MyJurnal
    Diabetes Mellitus has become one of the major and rising diseases affecting population all around the world. The most common complication that rises from the Diabetes Mellitus is diabetic foot ulcer. The increasing rate in diabetic foot ulcer among elderly has become a challenge that continues to rise and worsen. This study is conducted to determine the knowledge and practice of foot care and also the relationship between socio demographic data with knowledge of foot care among diabetic elderly in UKM Medical Centre (UKMMC). This is a quantitative cross-sectional descriptive study. A total of 81 respondents are being participated in this study. More than half of the study participants are female and majority of them are 60-74 years old. The result showed a significant relationship between gender and marital status with the knowledge of foot care among elderly diabetic patient in UKMMC. The present study showed that there was no significantly relationship between age, occupation, monthly income, duration of diabetes, body image and level of education with the knowledge and the level of foot care. In conclusion, the result of this study will help the health organization, hospital, nurses and care giver to take more responsibilities of foot care for diabetic elderly individuals.
    Study site: Elderly patients from orthopaedicf emale or male ward, surgical ward, medical ward, orthopaedic clinic and medical clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
  4. Qamaruz-Zaman N, Abdul-Sukor NS, Ab-Rahman SA, Yaacof N
    Environ Sci Pollut Res Int, 2019 May;26(13):13658-13663.
    PMID: 30955198 DOI: 10.1007/s11356-019-04808-9
    Path analysis has been largely used in marketing research but has recently been applied in an environmental management context. This study evaluated the potential of path analysis in identifying the influence of moisture content on odor from decomposing food waste. Food waste with varying moisture content was monitored for odor concentration, microbial population density, oxygen uptake rate, volatile fatty acids, ammonia, and hydrogen sulfide. These various parameters were later analyzed using SmartPLS 3.0 software to produce the path analysis model using simultaneous equation modeling. Results indicate that odor concentration of food waste was not directly affected by moisture content (not significant, t-statistical 1.46  1.96) and subsequently odor. In order to manage food waste-related odors, it is recommended that the waste be kept at a moisture content lower than 40%. This is especially critical if prolonged storage is unavoidable.
  5. Yaacof N, Qamaruz Zaman N, Yusup Y, Yusoff S
    Environ Sci Pollut Res Int, 2019 Aug;26(23):24286-24299.
    PMID: 31214886 DOI: 10.1007/s11356-019-05517-z
    Malaysia is the second-largest producer and exporter of palm oil amounting to 39% of world palm oil production and 44% of world exports (MPOB, 2014). An enormous amount of palm oil mill effluent is released during palm oil milling, and the effluent causes a major odor problem. Many methods, such as biofiltering, can be adopted to manage the malodor. However, these methods are expensive and require high maintenance. The separation distance method can be used as an alternative due to its low cost and effectiveness. This research was conducted to verify the performance of three different methods, namely, in-field monitoring by using an olfactometer, CALPUFF model, and Gaussian plume model. Given that no research has compared the three methods, this study examined the effectiveness of the methods and determined which among them is suitable for use in Malaysia. The appropriate separation distances were 1.3 km for in-field monitoring, 1.2 km for the CALPUFF model, and 0.5 for the Gaussian plume model. These different values of separation distance were due to the various approaches involved in each method. This research determined an appropriate means to establish a proper separation distance for reducing odor nuisance in areas around palm oil mills.
  6. Khairul Zaman N, Rohani R, Izni Yusoff I, Kamsol MA, Basiron SA, Abd Rashid AI
    PMID: 34501755 DOI: 10.3390/ijerph18179164
    The evaluation of complex organic and inorganic coagulant's performances and their relationships could compromise the surface water treatment process time and its efficiency. In this work, process optimization was investigated by comparing an eco-friendly chitosan with the industrially used coagulants namely aluminum sulfate (alum), polyaluminum chloride (PAC), and aluminum chlorohydrate (ACH) in compliance with national drinking water standards. To treat various water samples from different treatment plants with turbidity and pH ranges from 20-826.3 NTU and 5.21-6.80, respectively, 5-20 mg/L coagulant dosages were varied in the presence of aluminum, ferum, and manganese. Among all, 10 mg/L of the respective ACH and chitosan demonstrated 97% and 99% turbidity removal in addition to the removal of the metals that complies with the referred standard. However, chitosan owes fewer sensitive responses (turbidity and residual metal) with the change in its input factors (dosage and pH), especially in acidic conditions. This finding suggested its beneficial role to be used under the non-critical dosage monitoring. Meanwhile, ACH was found to perform better than chitosan only at pH > 7.4 with half dosage required. In summary, chitosan and ACH could perform equally at a different set of optimum conditions. This optimization study offers precise selections of coagulants for a practical water treatment operation.
  7. Rahman MA, Zaman N, Asyhari AT, Al-Turjman F, Alam Bhuiyan MZ, Zolkipli MF
    Sustain Cities Soc, 2020 Nov;62:102372.
    PMID: 32834935 DOI: 10.1016/j.scs.2020.102372
    The COVID-19 disease has once again reiterated the impact of pandemics beyond a biomedical event with potential rapid, dramatic, sweeping disruptions to the management, and conduct of everyday life. Not only the rate and pattern of contagion that threaten our sense of healthy living but also the safety measures put in place for containing the spread of the virus may require social distancing. Three different measures to counteract this pandemic situation have emerged, namely: (i) vaccination, (ii) herd immunity development, and (iii) lockdown. As the first measure is not ready at this stage and the second measure is largely considered unreasonable on the account of the gigantic number of fatalities, a vast majority of countries have practiced the third option despite having a potentially immense adverse economic impact. To mitigate such an impact, this paper proposes a data-driven dynamic clustering framework for moderating the adverse economic impact of COVID-19 flare-up. Through an intelligent fusion of healthcare and simulated mobility data, we model lockdown as a clustering problem and design a dynamic clustering algorithm for localized lockdown by taking into account the pandemic, economic and mobility aspects. We then validate the proposed algorithms by conducting extensive simulations using the Malaysian context as a case study. The findings signify the promises of dynamic clustering for lockdown coverage reduction, reduced economic loss, and military unit deployment reduction, as well as assess potential impact of uncooperative civilians on the contamination rate. The outcome of this work is anticipated to pave a way for significantly reducing the severe economic impact of the COVID-19 spreading. Moreover, the idea can be exploited for potentially the next waves of corona virus-related diseases and other upcoming viral life-threatening calamities.
  8. Tajau R, Rohani R, Alias MS, Mudri NH, Abdul Halim KA, Harun MH, et al.
    Polymers (Basel), 2021 Jun 04;13(11).
    PMID: 34199699 DOI: 10.3390/polym13111865
    In countries that are rich with oil palm, the use of palm oil to produce bio-based acrylates and polyol can be the most eminent raw materials used for developing new and advanced natural polymeric materials involving radiation technique, like coating resins, nanoparticles, scaffold, nanocomposites, and lithography for different branches of the industry. The presence of hydrocarbon chains, carbon double bonds, and ester bonds in palm oil allows it to open up the possibility of fine-tuning its unique structures in the development of novel materials. Cross-linking, reversible addition-fragmentation chain transfer (RAFT), polymerization, grafting, and degradation are among the radiation mechanisms triggered by gamma, electron beam, ultraviolet, or laser irradiation sources. These radiation techniques are widely used in the development of polymeric materials because they are considered as the most versatile, inexpensive, easy, and effective methods. Therefore, this review summarized and emphasized on several recent studies that have reported on emerging radiation processing technologies for the production of radiation curable palm oil-based polymeric materials with a promising future in certain industries and biomedical applications. This review also discusses the rich potential of biopolymeric materials for advanced technology applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links