Displaying all 4 publications

Abstract:
Sort:
  1. Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA
    J Hazard Mater, 2009 Apr 30;163(2-3):650-6.
    PMID: 18771848 DOI: 10.1016/j.jhazmat.2008.07.090
    Coagulation-flocculation is a relatively simple physical-chemical technique in treatment of old and stabilized leachate which has been practiced using a variety of conventional coagulants. Polymeric forms of metal coagulants which are increasingly applied in water treatment are not well documented in leachate treatment. In this research, capability of poly-aluminum chloride (PAC) in the treatment of stabilized leachate from Pulau Burung Landfill Site (PBLS), Penang, Malaysia was studied. The removal efficiencies for chemical oxygen demand (COD), turbidity, color and total suspended solid (TSS) obtained using PAC were compared with those obtained using alum as a conventional coagulant. Central composite design (CCD) and response surface method (RSM) were applied to optimize the operating variables viz. coagulant dosage and pH. Quadratic models developed for the four responses (COD, turbidity, color and TSS) studied indicated the optimum conditions to be PAC dosage of 2g/L at pH 7.5 and alum dosage of 9.5 g/L at pH 7. The experimental data and model predictions agreed well. COD, turbidity, color and TSS removal efficiencies of 43.1, 94.0, 90.7, and 92.2% for PAC, and 62.8, 88.4, 86.4, and 90.1% for alum were demonstrated.
  2. Mohammadi P, Karami N, Zinatizadeh AA, Falahi F, Aghamohammadi N, Almasi A
    Ultrason Sonochem, 2019 Jan 22.
    PMID: 30712854 DOI: 10.1016/j.ultsonch.2019.01.030
    In this study, high-frequency ultrasound wave (1.8 MHz) at low intensity was applied to improve activated sludge settleability at high MLSS concentration. The effect of irradiation intensity, sonication mode, MLSS concentration and sample volume on the physical characteristics of sludge in a pilot scale settling column were investigated for optimizing the conditions. The obtained results showed that high-frequency ultrasound decreased the height of sludge (44%) and effluent turbidity (82.2%) and increased sludge settling velocity about 3 times at high biomass concentration. Irradiation intensity of 0.4 w/cm2 and sonication mode with interval times of 10 s showed the best results on the performance of the system at MLSS concentration of 8000 mg/L with a sample volume of 3 L.
  3. Zinatizadeh AA, Mohamed AR, Abdullah AZ, Mashitah MD, Hasnain Isa M, Najafpour GD
    Water Res, 2006 Oct;40(17):3193-208.
    PMID: 16949124
    In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.
  4. Isa MH, Ibrahim N, Aziz HA, Adlan MN, Sabiani NH, Zinatizadeh AA, et al.
    J Hazard Mater, 2008 Apr 1;152(2):662-8.
    PMID: 17714862
    This study proposed an oil palm by-product as a low-cost adsorbent for the removal of hexavalent chromium [Cr (VI)] from aqueous solution. Adsorption of Cr (VI) by sulphuric acid and heat-treated oil palm fibre was conducted using batch tests. The influence of pH, contact time, initial chromium concentration and adsorbent dosage on the removal of Cr (VI) from the solutions was investigated. The optimum initial pH for maximum uptake of Cr (VI) from aqueous solution was found to be 1.5. The removal efficiency was found to correlate with the initial Cr (VI) concentration, adsorbent dosage as well as the contact time between Cr (VI) and the adsorbent. The adsorption kinetics tested with pseudo first order and pseudo second order models yielded high R(2) values from 0.9254 to 0.9870 and from 0.9936 to 0.9998, respectively. The analysis of variance (ANOVA) showed significant difference between the R(2) values of the two models at 99% confidence level. The Freundlich isotherm (R(2)=0.8778) described Cr (VI) adsorption slightly better than the Langmuir isotherm (R(2)=0.8715). Difficulty in desorption of Cr (VI) suggests the suitability of treated oil palm fibre as a single-use adsorbent for Cr (VI) removal from aqueous solution.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links