Artificial intelligence (AI) has become a crucial element of modern technology, especially in the healthcare sector, which is apparent given the continuous development of large language models (LLMs), which are utilized in various domains, including medical beings. However, when it comes to using these LLMs for the medical domain, there's a need for an evaluation platform to determine their suitability and drive future development efforts. Towards that end, this study aims to address this concern by developing a comprehensive Multi-Criteria Decision Making (MCDM) approach that is specifically designed to evaluate medical LLMs. The success of AI, particularly LLMs, in the healthcare domain, depends on their efficacy, safety, and ethical compliance. Therefore, it is essential to have a robust evaluation framework for their integration into medical contexts. This study proposes using the Fuzzy-Weighted Zero-InConsistency (FWZIC) method extended to p, q-quasirung orthopair fuzzy set (p, q-QROFS) for weighing evaluation criteria. This extension enables the handling of uncertainties inherent in medical decision-making processes. The approach accommodates the imprecise and multifaceted nature of real-world medical data and criteria by incorporating fuzzy logic principles. The MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) method is employed for the assessment of medical LLMs utilized in the case study of this research. The results of this research revealed that "Medical Relation Extraction" criteria with its sub-levels had more importance with (0.504) than "Clinical Concept Extraction" with (0.495). For the LLMs evaluated, out of 6 alternatives, ( A 4 ) "GatorTron S 10B" had the 1st rank as compared to ( A 1 ) "GatorTron 90B" had the 6th rank. The implications of this study extend beyond academic discourse, directly impacting healthcare practices and patient outcomes. The proposed framework can help healthcare professionals make more informed decisions regarding the adoption and utilization of LLMs in medical settings.
During the coronavirus disease (COVID-19) pandemic, different technologies, including telehealth, are maximised to mitigate the risks and consequences of the disease. Telehealth has been widely utilised because of its usability and safety in providing healthcare services during the COVID-19 pandemic. However, a systematic literature review which provides extensive evidence on the impact of COVID-19 through telehealth and which covers multiple directions in a large-scale research remains lacking. This study aims to review telehealth literature comprehensively since the pandemic started. It also aims to map the research landscape into a coherent taxonomy and characterise this emerging field in terms of motivations, open challenges and recommendations. Articles related to telehealth during the COVID-19 pandemic were systematically searched in the WOS, IEEE, Science Direct, Springer and Scopus databases. The final set included (n = 86) articles discussing telehealth applications with respect to (i) control (n = 25), (ii) technology (n = 14) and (iii) medical procedure (n = 47). Since the beginning of the pandemic, telehealth has been presented in diverse cases. However, it still warrants further attention. Regardless of category, the articles focused on the challenges which hinder the maximisation of telehealth in such times and how to address them. With the rapid increase in the utilization of telehealth in different specialised hospitals and clinics, a potential framework which reflects the authors' implications of the future application and opportunities of telehealth has been established. This article improves our understanding and reveals the full potential of telehealth during these difficult times and beyond.