Trace metals are required in many cellular processes in bacteria but also induce toxic effects to cells when present in excess. As such, various forms of adaptive responses towards extracellular trace metal ions are essential for the survival and fitness of bacteria in their environment. A soil Pseudomonas putida, strain S13.1.2 has been isolated from French vineyard soil samples, and shown to confer resistance to copper ions. Further investigation revealed a high capacity to tolerate elevated concentrations of various heavy metals including nickel, cobalt, cadmium, zinc and arsenic. The complete genome analysis was conducted using single-molecule real-time (SMRT) sequencing and the genome consisted in a single chromosome at the size of 6.6 Mb. Presence of operons and gene clusters such as cop, cus, czc, nik, and asc systems were detected and accounted for the observed resistance phenotypes. The unique features in terms of specificity and arrangements of some genetic determinants were also highlighted in the study. Our findings has provided insights into the adaptation of this strain to accumulation and persistence of copper and other heavy metals in vineyard soil environment.
An earlier electrochemical mechanism of DNA detection was adapted and specified for the detection of Vibrio parahaemolyticus in real samples. The reader, based on a screen printed carbon electrode, was modified with polylactide-stabilized gold nanoparticles and methylene blue was employed as the redox indicator. Detection was assessed using a microprocessor to measure current response under controlled potential. The fabricated sensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0 × 10(-8)-2.0 × 10(-13) M with a detection limit of 2.16 pM. The relative standard deviation for 6 replications of differential pulse voltammetry (DPV) measurement of 0.2 µM complementary DNA was 4.33%. Additionally, cross-reactivity studies against various other food-borne pathogens showed a reliably sensitive detection of the target pathogen. Successful identification of Vibrio parahaemolyticus (spiked and unspiked) in fresh cockles, combined with its simplicity and portability demonstrate the potential of the device as a practical screening tool.
In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
A modified genomic DNA extraction method named the combination of lysozyme and ultrasonic lysis (CLU) method was used to analyze the fish intestinal microflora. In this method, the physical disruption and chemical lysis steps were combined, and some parameters in the key steps were adjusted. In addition, the results obtained by this method were compared with the results obtained by the Zirmil-beating cell disruption method and the QIAamp Fast DNA Stool Mini Kit. The OD260/OD280ratio and concentration of the DNA extracted using the CLU method were 2.02 and 282.8 µg/µL, respectively; when the incubation temperatures for lysozyme and RNase were adjusted to 37 °C, those values were 2.08 and 309.8 µg/µL, respectively. On the agarose gel, a major high-intensity, discrete band of more than 10 kb was found for the CLU method. However, the smearing intensity of degraded DNA was lower when the incubation temperatures were 60 °C for lysozyme and 30 °C for RNase than when incubation temperatures of 37 °C for lysozyme and 37 °C for RNase were used. The V3 variable region of the prokaryotic 16S rDNA was amplified, and an approximately 600-bp fragment was observed when the DNA extracted using the CLU method was used as a template. The CLU method is simple and cost effective, and it yields high-quality, unsheared, high-molecular-weight DNA, which is comparable to that obtained with a commercially available kit. The extracted DNA has potential for applications in critical molecular biology techniques.
Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
Trichoderma spp., a known beneficial fungus is reported to have several mechanisms to enhance plant growth. In this study, the effectiveness of seven isolates of Trichoderma spp. to promote growth and increase physiological performance in rice was evaluated experimentally using completely randomized design under greenhouse condition. This study indicated that all the Trichoderma spp. isolates tested were able to increase several rice physiological processes which include net photosynthetic rate, stomatal conductance, transpiration, internal CO2 concentration and water use efficiency. These Trichoderma spp. isolates were also able to enhance rice growth components including plant height, leaf number, tiller number, root length and root fresh weight. Among the Trichoderma spp. isolates, Trichoderma sp. SL2 inoculated rice plants exhibited greater net photosynthetic rate (8.66 μmolCO2 m(-2) s(-1)), internal CO2 concentration (336.97 ppm), water use efficiency (1.15 μmoCO2/mmoH2O), plant height (70.47 cm), tiller number (12), root length (22.5 cm) and root fresh weight (15.21 g) compared to the plants treated with other Trichoderma isolates tested. We conclude that beneficial fungi can be used as a potential growth promoting agent in rice cultivation.
A novel method for the assay of polyhydroxyalkanoate (PHA)-degrading ability of triacylglycerol lipases was developed. By applying the natural affinity of lipases towards hydrophobic interfaces, a sensitive and rapid densitometry analysis for the evaluation of hydrolytic activity of lipase droplets towards PHA-coated surface was successfully carried out. We found that 12 out of 14 tested lipases which are of fungal, bacterial and animal origin were able to hydrolyze P(3HB-co-92 mol% 4HB) thin film. The patterns and opacity of the hydrolysis spots of lipases on PHA films allowed easy comparison of PHA-hydrolytic strength of lipases. Lipase from the bacterium Chromobacterium viscosum exhibited the highest PHA-degrading activity. The hydrolytic activity of lipases on water insoluble PHA, emulsified p-nitrophenyl laurate and olive oil were also compared and interestingly some lipases showed better activity when PHA was used as a substrate.
The nutrition-versatility of Burkholderia sp. strain USM (JCM 15050) has initiated the studies on the use of this bacterium for polyhydroxyalkanoate (PHA) production. To date, the Burkholderia sp. has been reported to synthesize 3-hydroxybutyrate, 3-hydroxyvalerate and 3-hydroxy-4-methylvalerate monomers. In this study, the PHA biosynthetic genes of this strain were successfully cloned and characterized. The PHA biosynthetic cluster of this strain consisted of a PHA synthase (phaC), β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB) and PHA synthesis regulator (phaR). The translated products of these genes revealed identities to corresponding proteins of Burkholderia vietnamiensis (99-100 %) and Cupriavidus necator H16 (63-89%). Heterologous expression of phaCBs conferred PHA synthesis to the PHA-negative Cupriavidus necator PHB¯4, confirming that phaCBs encoded functionally active protein. PHA synthase activity measurements revealed that the crude extracts of C. necator PHB¯4 transformant showed higher synthase activity (243 U/g) compared to that of wild-types Burkholderia sp. (151 U/g) and C. necator H16 (180 U/g). Interestingly, the transformant C. necator PHB¯4 harbouring Burkholderia sp. PHA synthase gene accumulated poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with 4-hydroxybutyrate monomer as high as up to 87 mol% from sodium 4-hydroxybutyrate. The wild type Burkholderia sp. did not have the ability to produce this copolymer.
Bromelain, a cysteine protease with various therapeutic and industrial applications, was expressed in Escherichia coli, BL21-AI clone, under different cultivation conditions (post-induction temperature, L-arabinose concentration and post-induction period). The optimized conditions by response surface methodology using face centered central composite design were 0.2% (w/v) L-arabinose, 8 hr and 25°C. The analysis of variance coupled with larger value of R2 (0.989) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced bromelain activity of 9.2 U/mg while validation experiments gave bromelain activity of 9.6 ± 0.02 U/mg at 0.15% (w/v) L-arabinose, 8 hr and 27°C. This study had innovatively developed cultivation conditions for better production of recombinant bromelain in shake flask culture.
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the polyhydroxyalkanoate (PHA) copolymers which can be degraded by lipases. In this study, the depolymerizing activity of different known commercial lipases was investigated via microassay using P(3HB-co-92 mol % 4HB) thin film as substrate. Non-enzymatic hydrolysis occurred under conditions in which buffers with pH 12 and 13 were added or temperature of 50 °C and above. Different concentrations of metal ions or detergents alone did not cause the film hydrolysis. The depolymerizing activity of lipases on P(3HB-co-4HB) was optimum in the pH range of 6-8 and at temperatures between 30 and 50 °C. Addition of metal ions and detergents in different concentrations was also shown to cause variable effects on the depolymerizing activity of commercial lipases. Pancreatic extracts from both mouse and chicken showed similar depolymerizing activity as the commercial lipases on the P(3HB-co-4HB) film. The presence of lipolytic enzymes in the organ extracts was confirmed with another lipase activity assay, p-nitrophenyl laurate assay. For the first time this has produced a direct evidence for the involvement of lipase-like enzymes from animal in the degradation of this PHA. Lipase is most likely the enzyme from pancreas that was involved in the degradation.
Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
Psidium guajava L. (guava) is predominantly grown throughout the world and known for its medicinal properties in treating various diseases and disorders. The present work focuses on aqueous extraction of bioactive compounds from the guava leaf and its utilization in the formulation of jelly to improve the public health. The guava leaf extract has been used in the preparation of jelly with pectin (1.5 g), sugar (28 g) and lemon juice (2 mL). The prepared guava leaf extract jelly (GJ) and the control jelly (CJ, without extract) were subjected to proximate, nutritional and textural analyses besides determination of antioxidant and antimicrobial activities. GJ was found to contain carbohydrate (45.78 g/100 g), protein (3.0 g/100 g), vitamin C (6.15 mg/100 g), vitamin B3 (2.90 mg/100 g) and energy (120.6 kcal). Further, the texture analysis of CJ and GJ indicated that both the jellies showed similar properties emphasizing that the addition of guava leaf extract does not bring any change in the texture properties of jelly. GJ exhibited antimicrobial activity against various bacteria ranging from 11.4 to 13.6 mm. Similarly, GJ showed antioxidant activity of 42.38% against DPPH radical and 33.45% against hydroxyl radical. Mass spectroscopic analysis of aqueous extract confirmed the presence of esculin, quercetin, gallocatechin, 3-sinapoylquinic acid, gallic acid, citric acid and ellagic acid which are responsible for antioxidant and antimicrobial properties.
Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them.
Mushrooms are a well known source of many bioactive and nutritional compounds with immense applicability in both the pharmaceutical and food industries. They are widely used to cure various kinds of ailments in traditional medicines. They have a low amount of fats and cholesterol and possess a high number of proteins. Immunomodulators have the ability which can improve immunity and act as defensive agents against pathogens. One such class of immunomodulators is fungal immunomodulatory proteins (FIPs). FIPs have potential roles in the treatment of cancer, and immunostimulatory effects and show anti-tumor activities. In the current study, 19 FIPs from edible mushrooms have been used for comparison and analysis of the conserved motifs. Phylogenetic analysis was also carried out using the FIPs. The conserved motif analysis revealed that some of the motifs strongly supported their identity as FIPs while some are novel. The fungal immunomodulatory proteins are important and have many properties which can be used for treating ailments and diseases and this preliminary study can be used for the identification and functional characterization of the proposed novel motifs and in unraveling the potential roles of FIPs for developing newer drugs.
Aquatic environmental microbial biofilms grow in a broad range of redox environments from oxic to methanogenic, and they often also establish internal redox gradients. In technical applications, biofilms are also subjected to controlled redox conditions. Studies on biofilms often make use of fluorescence microscopic imaging techniques together with lectin binding analysis to gain insights into structure, composition, and functions of the biofilms. Here we studied the direct influence of redox potentials on fluorescence lectin binding analyses (FLBA) for two commonly used lectin-fluorophore conjugates. An effect of the electrical potential on signal intensity was observed and found to be statistically significant. The signal intensity changes however, remained within the range of a few percent total. A significant drop in intensity was only observed for extremely oxidizing potentials, typically not found under environmental conditions. Our results showed that the fluorophore itself and not the lectin binding to the respective glycoconjugate causes fluorescence changes. The two tested lectin-fluorophores are shown to be suitable for studying the distribution and composition of EPS in environmental biofilms or technical applications and under varying redox conditions.
Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.
Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.
Enterococcus faecium No. 78 (PNCM-BIOTECH 10375) isolated from puto, a type of fermented rice in the Philippines was used to produce lactic acid in repeated batch fermentation mode. Enzymatically liquefied sago starch was used as the sole carbon source, since sago (Metroxylon spp) is a sustainable crop for industrial exploitation. Liquefied sago starch was inoculated with E. faecium to perform the saccharification and fermentation processes simultaneously. Results demonstrated that E. faecium was reused for 11 fermentation cycles with an average lactic acid yield of 36.3 ± 4.71 g/l. The lactic acid production was superior to that of simple batch mode and continuous fermentation in terms of lactic acid concentration. An un-dissociated lactic acid concentration of 1.15 mM affected the productivity of the cells. Work is in progress to maintain and increase the usability of the cells over higher fermentation cycles.
The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.